CONTENTS

1. REPAIR PROCEDURE. 1
2. SPECIAL TOOLS 3
3. MAINTENACE OPERATIONS 7
4. ENGINE 19
5. Servicing with engine mounted in frame 20
6. Engine removal and installation. 20
7. Cylinder head, cylinder and piston 24
8. Valves and valve sprihgs 33
9. Oil pump and oil filter. 36
10. Clutch 40
11. Gear shift mechanism 43
12. Cam chain tensioner 46
13. Crankshaft and connecting rod 47
14. Transmission, kick starter and primary shaft 53
15. Carburetor 57
16. CHASSIS 65
17. Front wheel and front brake 65
18. Rear wheel and real brake 73
19. Steering. 77
20. Front suspension. 79
21. Rear suspension 82
22. Frame body 84
23. ELECTRICAL 87
24. General description 87
25. Ignition system 88
26. Charging system. 93
27. Starting system 98
28. Electrical equipment 103
29. INSPECTION AND ADJUSTMENT OF CB550 107
30. Clutch 107
31. NEW FEATURES OF CB550 108
32. Blow-by Gas Scavenging Device. 108
33. Starting Motor Safety 109
34. Front Suspension 111
35. Brake Lining Wear Indicator 112
36. COMPARISON OF CB550 TO CB500 113
37. ENGINE 121
38. Clutch 121
39. Gearshit 124
40. TROUBLE SHOOTING 128
41. MAINTENANCE SCHEDULE 134
42. TECHNICAL DATE. 135
43. WIRING DIAGRAM 143
44. INDEX. 148
45. SUPPLEMENT TO CB550K1. 149
46. Always replace gaskets, O-rings, cotter pins, etc. with new ones whenever reassembling.
47. When tightening bolts, nuts or screws, begin on larger-diameter or inner one first and tighten them to specified torque in a criss-cross pattern.
48. Use genuine Honda-recommended parts and lubricants when servicing.
49. Be sure to use a special tool or tools where so specified.
50. A joint work of more than two persons must be carried out with mutual safety attention paid.
51. Wash clean engine parts upon disassembly. Coat their sliding surfaces with high-quality lubricant when reassembling.
52. Coat or pack grease where so specified.
53. After reassembling, check to be sure each part is tightened properly. Also check for proper operation.
54. Be sure to retain fuel and oil pipes with clips.

ENGINE

	Item	Q'ty	Tor	alues
			$\mathrm{Kg}-\mathrm{m}$	$\mathrm{lbs}-\mathrm{ft}$
1.	Tappet adjusting nut	8	1.1-1.5	8. $0-10.8$
2.	Cam sprocket knock bolt, 7×12	2	1. 4-1.8	10.1-10.8
3.	Cylinder head nut, 8 mm	12	2. 0-2.3	14.5-16.6
4.	A. C. generator rotor set bolt	1	5. 0-6. 0	28.9-30.3
5.	Starting clutch screw, 6×18 cross flat head screw	3	0.8-1.2	14.5-17.3
6.	Upper crankcase bolt, 8×100 Flange hex bolt	3	2. 0-2.5	14.5-18.1
7.	Upper crankcase bolt, 8×145 hex bolt	1	2. 3-2.5	16.6-18.0
8.	Lower crankcase bolt, 8×100 hex bolt	10	2. 0-2.5	14.5-18.1
9.	Connecting rod nut	8	2. 0-2.2	14.5-15.9
10.	Oil pump screw, 6×35 cross flat head screw	3	0. 8-1.2	5.7-8.6
11.	Clutch filter fixing bolt, 6×45 hex bolt	1	0. 8-1.2	5.7-8.6
12.	Spark advancer bolt, 6×55 Flange hex bolt	1	1. 1-2. 5	8. 0-10. 8
13.	Tachometer gear holder screw, 6×16 cross flat head screw	1	1. 0-1.4	7. 2-10.0
14.	Exhaust pipe flange nut, 6 mm	8	0. 8-1.2	5.7-8.6
15.	Oil pressure switch	1	1. 5-2.0	10.8-14.5
16.	Gear shift lever bolt, 6×20 hex bolt	1	0. 8-1.0	5.7-7.2
17.	Oil filter center bolt	1	2. 7-3. 3	19.5-23.8
18.	Spark plug	4	1. 2-1.6	8.6-11.6
19.	Oil drain bolt	1	3. 5-4. 0	25. 3-28.9
20.	Clutch spring, 6×20 hex bolt	4	1. 0-1.4	7. 2-10. 1
21.	Tappet hole cap	8	1. 0-1.4	7. 2-10.1
22.	Oil path cap	1	1. 0-1.4	7. 2-10. 1
23.	Gear shift return spring, 8 mm bolt	1	2. 0-3.0	14.5-21.7
24.	Drive sproket	1	1. 1-1. 5	
Standard parts			$\mathrm{Kg}-\mathrm{m}$	$\mathrm{lbs}-\mathrm{ft}$
SCREW pan 6 mm SCREW flat 6 mm BOLT hex 6 mm BOLT flange 6 mm NUT hex 6 mm			0.7-1.1	5.1-8.0
			0. 8-1.2	$5.8-8.7$
			0. 8-1.2	$5.8-8.7$
			1. 0-1.4	7. 2-10.1
			0. 8-1.2	5.8-8.7

FRAME

	Item		Torq	values
			$\mathrm{kg}-\mathrm{m}$	$\mathrm{lbs}-\mathrm{ft}$
1.	Rear brake pedal bolt, 8×32 hex holt	1	1.8-2.5	13. 0-18.1
2.	Foot peg nut, 12 mm	2	5. 0-6.0	36. 2-43.4
3.	Engine hanger bolt A	5	3. 0-4.0	21.7-28.9
4.	Engine hanger plate	6	1. 8-2.5	13.0-18.1
5.	Rear fork pivot nut, 14 mm	1	5. 5-7.0	39.8-50.6
6.	Rear suspension upper nut, 10 mm cap nut	2	3. 0-4.0	21. 7-28.9
7.	Rear suspension lower bolt, 10×32 hex bolt	2	3. $0-4.0$	21. 7-28.9
8.	Oil bolt	3	3. 4-4.0	24.6-28.9
9.	Brake stop switch	1	3. 0-4.0	24.6-28.9
10.	Front brake disc nut, 8 mm	6	1. 8-2.5	13. 0-18.1
11.	Brake oil joint, 6×28 hex bolt	1	0.8-1.0	5. 8-87.2
12.	Brake hose joint	1	0.6-1.0	4.3-7.2
13.	Master cylinder bolt, 6×28 hex bolt	2	0.8-1.0	5.7-7.2
14.	Caliper set bolt	2	3. 4-4.0	24.6-28.9
15.	Holder joint bolt, $8 \times 40,8 \times 50$ hex bolt	3	1. 8-2.3	13. 0-16.6
16.	Front fork bolt	2	5. 5-6.5	39.8-47.0
17.	Steering stem nut	1	8. $0-12.0$	57.9-86.7
18.	Steering stem bolt, 10×40 hex bolt	2	3. 0-4.0	21. 7-28.9
19.	Rear wheel axle nut	1	8. 0-10.0	57. 8-72.3
20.	Front axle holder nut, 8 mm	4	1. 8-2.3	13. 0-16.6
21.	Handlebar holder bolt, 8×40 hex bolt	4	1. 8-2. 3	13.0-16.6
22.	Front wheel axle nut	1	5. 5-6.5	39.8-47.0
23.	Rear brake stopper arm bolt and nut, 8 mm	1	1. 8-2.3	13.0-16.6
24.	Fork top bridge bolt, 8×56 hex bolt	2	1. 8-2.3	13.0-16.6
25.	Drive chain adjuster bolt and nut, 8 mm hex bolt	2	1. 5-2.0	10.8-14.5
26.	Drive chain adjuster stopper bolt	2	1. 8-2.3	13.0-16.6
27.	Main stand pivot bolt, 8×40 hex bolt	2	1. 5-2.0	10.8-14.5
28.	Rear foot peg nut, 12 mm	2	4.5-6.0	32.5-43.4
29.	Caliper joint pin	1	1. 8-2.5	13. 0-18.1
30.	Bottom bridge	2	3. 0-4.0	21. 7-28.9
31.	Final driven sprocket	4	3. $0-4.0$	21. 7-28.9
Standard parts				
Bolt hex. 6 mm Bolt hex. 8 mm			0.8-1.2	$5.8-8.7$
			1. 5-2. 3	10.8-16.6

2. SPECIAL TOOLS

$\bigcirc=$ USED, $\quad \times=$ NOT USED, (op)=optional tool

$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	Tool No.	Tool Name	CB 500	CB 550	Q'ty	Remarks
(1)	07902-2000000	Spanner, pin 48 mm	\bigcirc	\bigcirc	1	
(2)	07906-3230000	Wrench, box 12 mm	\bigcirc	\bigcirc	1	Cylinder head locking nut
(3)	07908-3230000	Wrench, tappet adjusting	\bigcirc	\bigcirc	1	
(4)	07909-3000000	Wrench, spark plug	\bigcirc	\bigcirc	1	
(5)	07910-3230101	Wrench, F retainer	\bigcirc	\bigcirc	1	Front hub dis/assembling
(6)	07910-3230201	Wrench, R retainer	\bigcirc	\bigcirc	1	Rear hub dis/assembling
(7)	07914-3230000	Pliers, Snap ring	\bigcirc	\bigcirc	1	Master cylinder piston dis/ assembling
(8)	07917-3230000	Wrench, hollew set 6 mm	\bigcirc	\bigcirc	1	Front fork bottom case dis/ assembling
(9)	07933-2160000	Puller, rotor	\bigcirc	\bigcirc	1	
(10)	07936-3230100	Shaft, hammer	\bigcirc	\times	1	Primary shaft removing (Use with item No. 11)
(11)	07936-3230200	Weight, hammer	\bigcirc	\times	1	
(12)	07936-3740100	Shoft, sliding hammer	\times	\bigcirc	1	Primary shaft removing (Use with item No. 17)
(13)	07942-3290100	Driver, valve guide	\bigcirc	\bigcirc	1	
(14)	07942-3290200	Remover, valve guide	\bigcirc	\bigcirc	1	
(15)	07945-3230100	Driver A, bearing	\bigcirc	\times	1	
(16)	07945-3230200	Driver B, bearing	\bigcirc	\times	1	
(17)	07945-3000500	Weight, sliding hammer	\times	\bigcirc	1	
(18)	07945-3330300	Bearing driver attachment	\times	\bigcirc	1	
(19)	07945-3330200	Driver, attachment	\times	\bigcirc	1	Transmission bearing inner driver 6205 (Use with item No. 23)
(20)	07946-3600000	Driver, attachment	\times	\bigcirc	1	Rear hub bearing driver ATT 6305 (Use with item No. 23)
(21)	07946-9350200	Driver, attachment	\times	\bigcirc	1	Front hub bearing driver ATT 6302 Use with item No. 23)
(22)	07947-3290000	Guide, fork seal	\bigcirc	\bigcirc	1	
(23)	07949-6110000	Driver, handle	\times	\bigcirc	1	Use with item Nos. 18, 19, 20, and 21
(24)	07953-3330000	Remover, ball race	\times	\bigcirc	1	
(25)	07954-3230000	Compressor, piston ring	\bigcirc	\bigcirc	2	
(26)	07957-3290000	Compressor, valve spring	\bigcirc	\bigcirc	1	
(27)	07958-2500000	Base, Piston	\bigcirc	\bigcirc	2	
(28)	07959-3290000	Compressor, shock absorber	\bigcirc	\bigcirc	1	
(29)	07967-3230100	Attachment A, driver	\bigcirc	\times	1	
(30)	07967-3230200	Attachment B, driver	\bigcirc	\times	1	
(31)	07967-3230000	Attachment remover	\bigcirc	\times	1	
(32)	07974-3230100	Piston cup guide	\bigcirc	\bigcirc	1	
(33)	07974-3230200	Cup guide	\bigcirc	\times	1	
(34)	07984-0980000	Reamer, valve guide	\times	\bigcirc	1	
(35)	07908-3230200	Wrench, carburetor adjusting	\bigcirc	\bigcirc	1	(op)
(36)	07504-3000100	Gauge set, vacuum	\bigcirc	\bigcirc	1	Carburetor adjusting (op)
(37)	07975-3000001	Tool set, chain joint	\bigcirc	\bigcirc	1	(op)
	07401-0010000	Gauge, flot level	\bigcirc	\bigcirc	1	(op)

3. MAINTENANCE OPERATIONS

1. TAPPET ADJUSTMENT

Adjust tappet clearance when the engine is cold.

1. Remove the tank.
2. Unscrew the tappet hole caps.
3. Remove the point cover and align the "T" (1•4) mark on the spark advancer to the timing mark when the No. 1 piston (pistons are numbered from left to right from the rider's position) is at top-deadcenter of the compression stroke.
4. Then check and adjust valve tappet clearances indicated by " O " in the chart below.
5. Measure the clearances using a feeler gauge, adjust by loosening the lock nut and turning the adjuster screw, and tighten the lock nut.
Valve tappet clearances:
INLET $\quad 0.05 \mathrm{~mm}(0.002 \mathrm{in}$.)
EXHAUST -0.08 mm (0.003 in .)
6. Next, rotate the crankshaft one revolution and realign the " T " $(1 \cdot 4)$ mark on the spark advancer to the timing mark (in this position, the No. 4 piston is at top-dead-center of the compression stroke). Then check and adjust the valve tappet clearances indicated by " X " in the chart below. See item 5 above for proper valve tappet clearances.

	No. 1 cylinder	No. 2 cylinder	No. 3 cylinder	No. 4 cylinder
Inlet valve	O	X	O	X
Exhaust valve	O	O	X	X

Note:

- Hold the adjusting screw so that it is not turned when tightening the lock nut.
- Make sure the clearance is not disturbed when the lock nut is tightened.

Fig. 1 (1) No. 1 piston
(3) No. 3 piston
(2) No. 2 piston
(4) No. 4 piston

Fig. 2 (1) T mark
(3) 1.4 mark
(2) Timing mark

Fig. 3
(1) Lock nut
(3) Feeler gauge
(2) Adjusting screw
5. Snap the throttle several times and recheck vacuum pressures after the four carburetors are indicating the same vacuum pressure.
Repeat the adjustment in item 4 if vacuum pressures lack uniformity.
Check the following items if vacuum pressure is less than $\mathbf{1 5 ~ \mathbf { ~ c m ~ H g }}$ for any of the carburetor:

1. Be sure the ignition timing is $-5^{\circ} / 1,150-30^{\circ} / 2,500 \mathrm{rpm}$ BTDC.
2. Check the tappet clearances.

Inlet: $0.05 \mathrm{~mm}(0.002 \mathrm{in}$.)
Exhaust: 0.08 mm (0.003 in.)
3. Check the spark plug gap.

Gap: $0.6-0.7 \mathrm{~mm}(0.024-0.028 \mathrm{in}$.)
4. Check the compression pressure.

Pressure: $\quad 11-12 \mathbf{k g} / \mathbf{c m}^{2}$
(156.45-170.67 psi.)
6. Adjust the throttle stop screw to an engine idle speed of $950 \sim 1,050 \mathrm{rpm}$ after all four carburetors have been adjusted to the same vacuum pressure.
7. Adjust the air screw on each carburetor. (the standard adjustment for the air screws is $1 \pm 3 / 8$ turn open from the complete close position)
8. Readjust the engine idle speed to $\mathbf{9 5 0}$ $-1,050 \mathrm{rpm}$ with the throttle stop screw. Note:
Tighten the plugs in the inlet manifold after performing the carburetor synchronization.

Throttle Cable Adjustment

1. Turn the adjuster counterclockwise at the handle bar end to increase play in the throttle cable.

Note:

Leave about $3 \mathrm{~mm}(0.12 \mathrm{in})$ range of adjustment at the cable adjuster for final microadjustment.
2. Loosen the cable lock nut and turn the adjuster at the carburetor end to provide $3 \sim 4 \mathbf{~ m m}\left(1 / 8 \sim^{5 / 32}\right.$ in.) play at the throttle grip flange.

Note:

The throttle lever should hit the eccentric pin when the grip is forced to the full closed position. Replace the return cable with new one if it does not hit.

Fig. 8 (1) Low vacuum (3) High vacuum (2) Normal

Fig. 9 (1) Adjuster
(2) Lock nut

(3) Decrease
(4) Increase

Fig. $\mathbf{1 0}$ (1) Adjuster
Fig. 10 (1) Adjuster

(2) Lock nut

Fig. 11
(1) Throttle lever
(3) Lock nut
(2) Eccentric pin
(4) $2 \sim 3 \mathrm{~mm}(0.08 \sim 0.12 \mathrm{in}$.)

Fig. 12 (1) Stop screw

Fig. 13 (1) Slipper
(3) $2 \cdot 3$ points
(2) $1 \cdot 4$ points

Fig. 14 (1) Screw (a) (3) Breaker (5) $2 \cdot 3$ points (2) Screw (b)
(4) 1.4 points

Overtravel stopper adjustment
Loosen the lock nut and turn the eccentric pin. Clearance between the throttle lever and the eccentric pin should be $2 \sim 3 \mathrm{~mm}$ ($0.08 \sim 0.12 \mathrm{in}$).

Full throttle opening stopper adjustment Adjust the stop screw so that the throttle valve extends $0 \sim 1.0 \mathrm{~mm}(0 \sim 0.04 \mathrm{in}$.) above the throttle bore in the full open position.

3. BREAKER POINT GAP AND IGNITION TIMING ADJUSTMENT

Check the condition of the contact points, point gap and ignition timing. Adjust the ignition timing of the 1.4 points first.
Breaker point gap adjustment, $1 \cdot 4$ points

1. Rotate the crankshaft until the slipper on the contact breaker is coming up on the highest position of the cam lobe. Measure the point gap with a feeler gauge.
Standard point gap : $0.3 \sim 0.4 \mathrm{~mm}(0.012 \sim$ 0.016 in.)
2. Loosen screw (a) and move the breaker point assembly if it is necessary to adjust.
Breaker point gap adjustment, $2 \cdot 3$ points Adjust the $2 \cdot 3$ point gap in the same manner as for 1.4 points by loosening screw (b).
Note:
Clean the point surfaces with a point file or oil stone if they are pitted or rough.

Ignition timing adjustment, $\mathbf{1 \cdot 4}$ points

1. Disconnect the primary cord (blue cord) to the contact breaker at the connector and connect a 12 V test lamp at this point.
2. Turn the main switch to the ON position.
3. Rotate the crankshaft slowly. If the test lamp comes on when the " F " $(1 \cdot 4)$ mark on the spark advancer is aligned to the timing mark ($5^{\circ} \mathrm{BTDC}$.), the timing is correct.
4. If the adjustment is necessary, align the " F " $(1 \cdot 4)$ mark to the timing mark and loosen screw (b), and then move the base (b) until the lamp goes out. Tighten the screw.

Ignition timing adjustment, $2 \cdot 3$ points

1. Connect the 12 V test lamp to the primary cord (yellow cord) of the opposite contact breaker and align the "F" $(2 \cdot 3)$ mark to the timing mark.
2. Loosen screw (c) and move base (c) as shown above.

Ignition timing adjustment with stroboscopic timing light

The use of the stroboscopic timing light is recommended to obtain the most accurate timing.

1. Plug the timing light cord into the timing light receptacle.
2. Remove the spark plug cap from the No. 1 cylinder and install the timing attachment between the spark plug and the cap.
3. Connect the high tension cord of the timing light to the timing attachment, position the switch knob to TIMING, and start the engine.
The timing light will be flashing.
4. Aim the timing light toward the timing mark and make sure the " F " (1.4) mark and the timing mark are in line.
Next, increase the engine rpm at approx. 2500 rpm and at this speed, if the timing mark is between the two index lines located $23.5 \sim 26.5^{\circ}$ before "F" mark, the ignition timing at full advance condition is satisfactory.

Fig. 15 (1) 12 V lamp (2) Blue cord

Fig. 16 (1) "F" (1.4) mark
(2) Timing mark

Fig. 17
(1) Screw (b)
(3) Base (b)
(2) Breaker
(4) Screw (c)
(5) Base (c)

Fig. 18
(1) Timing light
(2) Timing attachment
(4) Battery
(5) Service tester

Fig. 19 (1) Lock bolt
(2) Adjuster

Fig. 20

Fig. 21 (1) Lock nut
(3) Increase free play
(2) Adjuster
(4) Decrease free play

Fig. 22 (1) Lock nut
(3) Increase free play
(2) Adjuster
(4) Decrease free play
5. Next, remove the spark plug cap from the No. 2 cylinder and install the timing attachment between the spark plug and the cap. Check the ignition timing ("F" $2 \cdot 3$) as described items $1 \sim 4$.
6. Adjust if timing is incorrect.

4. CLUTCH ADJUSTMENT

1. To provide play in the clutch cable, loosen the clutch adjuster lock bolt.
2. Turn the adjuster clockwise until a slight resistance is felt, and then turn counterclockwise about 3 mm ($1 / 8 \mathrm{in}$.). At that point, tighten the lock bolt.
3. Adjust play in the clutch cable at the lock nut and adjuster. The play should be $10 \sim 20 \mathrm{~mm} \quad(0.4 \sim 0.8 \mathrm{in}$.). Perform micro adjustment with the adjuster at the clutch lever end.

5. CAM CHAIN ADJUSTMENTS

Perform camchain tention adjustment in the following manner.

1. Remove the tappet hole caps from the No. 1 cylinder.
2. Remove the point cover, and align the "T" (1.4) mark to the timing mark.
3. Check both valves of No. 1 cylinder. If both valves are free, proceed to next step; if either or both of the valves are
tight, rotate the crankshaft 360°, and then proceed with the next step.
4. Rotate the crankshaft clockwise until the spring peg on the advancer assembly at the 1.4 position is just to the right of a line from the timing mark. This position is 15° ATDC.
5. At this point, loosen the lock nut so that proper chain tension can be obtained automatically.
6. Retighten the lock nut, and re-install point cover and tappet covers.

6. SPARK PLUG INSPECTION

Remove the spark plug with a spark plug wrench and check the gap and the insulator for damage or fouling.

1. Clean the plug with a spark plug cleaner or a wire brush.
2. Check the gap with a feeler gauge and adjust the opening to the standard $\mathbf{0 . 6} \sim$ $0.7 \mathrm{~mm}(0.02 \sim 0.03 \mathrm{in})$.
3. Replace the plug or plug gasket if the insulator or gasket is damaged.
Standard spark plugs: D-7ES (NGK) X 22 ES (DENSO)

7. ENGINE OIL INSPECTION AND CHANGE

Oil Level Inspection

Check the oil level with the dipstick gauge without screwing it into the case. If the level is below the lower mark on the gauge, add oil to the upper mark.
Recommended oil classification:

SAE $10 \mathrm{~W}-40$ or SAE $20 \mathrm{~W}-50$

Oil change
Perform the oil change while the engine is warm so that oil will drain properly.

1. Unscrew the drain bolt, and also remove the filler cap to assist draining.
2. Remove the oil filter to drain the oil completely.
3. Tighten the drain bolt and fill with $2.5 l$ (2.6 U. S. qt., 2.2 Imp . qt.) of new oil through the filler opening. Add oil as necessary to bring the oil level to the upper mark on the gauge.
Oil capacity: 3.0 liters (3.2 U.S. qt., 2.6 Imp. qt.)

Fig. 23
(1) Nut
(3) Timing mark
(4) Spring peg

Fig. 24 (1) Gap

Fig. 25
(1) Filler cap
(4) Lower level
(2) Oil level gauge
(5) Serviceable range
(3) Upper level

Fig. 26 (1) Drain bolt

Fig. 27 (1) Oil filter center bolt

Fig. 28 (1) Oil filter cover
(2) O ring
(4) Washer
(3) Spring
(5) Oil filter element
(6) Oil filter center bolt

Fig. 29 (1) Stopper bolt lock nut (3) Disc (2) Stopper bolt

Fig. 30 (1) Level mark

8. OIL FILTER SERVICING

Service the oil filter when changing the engine oil.

1. Unscrew the oil filter center bolt and remove the filter element.

Note:

- Certain amount of oil will drip from the filter when it is removed.
- When reinstalling the element, make sure that no parts are forgotten or pieces of rubber left on the seat to cause poor sealing.
- Replace the oil filter element with new item every 4,000 miles $(6,000 \mathrm{~km}$).

9. BRAKE INSPECTION AND ADJUSTMENT

Adjusting Brake Caliper

Whenever the brake pads are replaced, the brake caliper must be adjusted. This adjustment is made in the following manner, so that there is a small clearance between the fixed friction pad and the brake disc.

1. Raise the front wheel off the ground using a suitable prop.
2. Loosen the caliper stopper bolt lock nut.
3. Using a suitable screw driver, turn the stopper bolt in direction (A) until the friction pad contacts the brake disc. When the wheel is rotated, slight drag should be noticed.
4. While rotating the front wheel, turn the stopper bolt in direction (B) until the front wheel rotates freely.
5. Turn the stopper bolt $1 / 2$ turn in direction (B) further and tighten the lock nut.

Replenishing Brake Fluid

Remove the reservoir cap, washer and diaphragm, and whenever the level is lower than the level mark engraved inside the reservoir, fill the reservoir with DOT 3 BRAKE FLUID up to the level mark. Reinstall the diaphragm and washer, and tighten the reservoir cap securely.

Note:

- Do not mix different brands of brake fluid as chemical action will take place and may cause brake trouble.
- Do not use any other fluid in the brake system.
- Remove any brake fluid which may become spilled on the painted surface, rubber parts, and meter as it will produce chemical action and cause damage to these parts.

Brake Pad Inspection

Replace both pads A and B with new one when either of the pads is worn to the red serviceable limit mark aroung the pad.

Brake Bleeding

The brakes must be bled with great care subsequent to work performed on the brake system, when the lever becomes soft or spongy, or when lever travel is excessive. The procedure is best performed by two mechanics.

1. Remove the dust cap from the bleeder valve and attach bleeder hose.
2. Place the free end of the bleeder hose into a glass container which has some hydraulic brake fluid in it so that the end of the hose can be submerged.
3. Fill the reservoir using only the recommended brake fluid. Screw the cap partially on the reservoir to prevent entry of dust.
4. Pump the brake lever several times until pressure can be felt, holding the lever tight, open the bleeder valve by about one-half turn and squeeze the lever all the way down.
Do not release the lever until the bleeder valve has been closed again. Repeat this procedure until bubbles cease to appear in the fluid at the end of the hose.
5. Remove the bleeder hose, tighten the bleeder valve and install the bleeder valve dust cap.
6. Do not allow the fluid reservoir to become empty during the bleeding operation as this will allow air to enter the system again. Replenish the fluid as often as necessary while bleeding.

Fig. 31 (1) Red line

Fig. 32 (1) Diaphragm
(3) Master cylinder
(2) Brake fluid

Fig. 33
(1) Caliper
(3) Bleeder hose
(2) Bleeder
(4) Vessel
7. Check for proper effect of bleeding and absence of leaks in the front brake lines while holding pressure against the brake lever. Replenish fluid in the reservoir when bleeding is completed. Reinstall the diaphragm, washer and reservoir cap and tighten.
When the hydrulic brake system has been drained, it should be first filled as outlined below.

1. Fill the fluid reservoir.
2. Open the bleeder valve by one-half turn, squeeze the brake lever, close the valve and release the brake lever. This procedure must be repeated in this sequence until hydraulic fluid begins to flow through the bleeder hose. Having filled the hydraulic system with fluid, proceed with the actual bleeding operetion.

Notes:

- Brake fluid which has been pumped out of the system must not be used agaiu.
- Care must be taken, as brake fluid will damage the paint finish and instrument lenses.

Fig. 34

Fig. 35 (1) Adjuster nut (3) Decrease free play
(2) Increase free play

Fig. 36 (1) Seat lever
(2) Seat lock

Fig. 37 (1) Air cleaner element
(2) Spring clip

Rear Brake Adjustment

1. Normal play at the end of the brake pedal is $2-3 \mathrm{~cm}\left(3 / 4 \sim 1^{3} / 16 \mathrm{in}\right.$.).
2. Perform the adjustment with the adjuster nut.

10. AIR CLEANER ELEMENT

 SERVICING1. Open the seat and remove the tool tray.
2. Pull out the spring clip and take out the cleaner element.
3. Clean the element by tapping it lightly and blowing compressed air from inside.
4. DRIVE CHAIN INSPECTION AND ADJUSTMENT
5. Check the slack in the chain by raising and lowering the chain at the midpoint between the sprockets. The normal slack is $1 \sim 2 \mathrm{~cm}(3 / 8 \sim 3 / 4 \mathrm{in})$.
6. Adjust by loosening the rear axle nut and turning the adjust bolts on both sides.

Note:

The marks on both adjusters should be at the same location when the chain is properly adjusted.

12. BATTERY ELECTROLYTE INSPECTION

Remove the right side cover and check the electrolyte level. The level should be at the upper limit.

1. If the level is low, open the seat and remove the tool tray to add distilled water to the battery.
2. Remove six battery filler caps and fill the water to each cell up to the upper limit.

13. FRONT FORK OIL REPLACEMENT

1. Remove the fork bolt and drain bolt, and then drain the oil.
Actuate up and down the fork to drain the oil completely.
2. Flush the interior with the solvent.

Note:

Do not use gasoline for flushing.
3. Tighten the drain bolt securely and add new oil to the fork through the top of fork pipe.
Recommended oil: SAE $10 \mathrm{~W} \sim 30$
Capacity: $160 \mathrm{cc}(5.4 \mathrm{ozs})$

Fig. 38 (1) Fork cap bolt
(5) Adjust bolt (2) Mark
(6) Lock nut
(3) Axle nut
(7) Loosen
(4) Cotter pin
(8) Tighten

Fig. 39 (1) Upper limit (2) Lower limit

Fig. 40 (1) Fork bolts

Fig. 41 (1) Drain bolt

Fig. 42 (1) Compression gauge

14. COMPRESSION PRESSURE CHECK

1. Remove the spark plugs.
2. Insert the end of the compression gauge into the spark plug hole.
3. Set both the throttle and choke to full open position and kick the kick starter. Standard compression pressure:
$12 \mathrm{~kg} / \mathrm{cm}^{2}(\mathbf{1 7 0 . 6 7} \mathbf{~ p s i})$

Note:

- Fully open the throttle and choke so that the true compression pressure will be indicated on the gauge.
- Continue the kicking until the compression reading is at maximum because the reading will increase with each kicking.
- To obtain the true pressure reading, perform the measurement after warming up the engine.
(Low compression pressure)
When the compression pressure is below 10 $\mathrm{kg} / \mathrm{cm}^{2}$ (142.23 psi), the probable causes are leaks around the valves and piston rings, or from the head and cylinder gaskets.
Adjust the valve tappet clearances, or disassemble the engine and inspect the piston rings and gaskets.
(High compression pressure)
When the pressure is greater than $12 \mathrm{~kg} / \mathrm{cm}^{2}$ (170. 67 psi), the probable cause is excessive carbon deposits on the combustion chamber, piston head and the valves. Disassemble the head and cylinder, to remove the carbon.

1. SERVICING WITH ENGINE MOUNTED IN FRAME

Items	Pages
1. Cylinder Head Cover and Camshaft	24
2. Cylinder Head	24
3. Cylinder and Piston	24
4. Cam Chain Tensioner	25
5. Oil Filter and Oil Pump	36
6. Clutch	40
7. Gear Shift Mechanism	43
8. Electrical System i. e., (Generator and Starting motor)	95

2. ENGINE REMOVAL AND INSTALLATION

A. Removal

1. Turn the fuel cock to the "STOP" position, disconnect the fuel pipe at the tank, and dismount the fuel tank.
2. Unscrew the oil drain bolt and the oil filter center bolt, and drain the engine oil.
3. Remove the exhaust pipe and the muffler.
4. Disconnect the high tension cords at the spark plugs.
5. Disconnect the ground cable at the battery terminal.
6. Unscrew the 5 mm screw and disconnect the tachometer cable at the cylinder head cover.
7. Open the seat, take out the air cleaner element, unscrew three 6 mm bolts and remove the air cleaner case.

Fig. 43 (1) Drain bolt (2) Oil filter center bolt

Fig. 44 (1) Tachometer cable
(2) 5 mm screw

Fig. 45 (1) Air cleaner element (2) 6 mm bolts
(3) Air cleaner case
8. Disconnect the throttle cable at the carburetor.

Fig. 46 (1) Throttle cable
9. Loosen the two 5 mm screws at the carburetor insulator and the 4 mm screws at the air cleaner chamber. Remove the carburetor.

Fig. 47 (1) 5 mm screw
(2) 4 mm screw

Fig. 48 (1) Starting motor cable
(2) Magnetic switch
(3) Wiring coupler
11. Remove the gear change pedal, unscrew the starting motor cover bolts, remove the starting motor cover, and then remove the left crankcase cover. Disconnect the clutch cable at the clutch lifter.

Fig. 49 (1) Left crankcase cover
(3) Clutch lifter (2) Clutch cable

Fig. 50 (1) Contact breaker point leads

Fig. 51 Left side engine hanger bolts
(1) 8×50 hex bolt
(2) 10×50 hex bolt
(3) Rear upper hanger bolt
(4) 10×80 hex bolt
(5) Rear lower hanger bolt

Fig. 52 Right side engine hanger bolts
(1) 8×50 hex bolt
(2) 10×50 hex bolt
(3) Rear upper hanger bolt
(4) 8×100 hex bolt
(5) 8×40 hex bolt
(6) Rear lower hanger bolt
(7) 10×80 hex bolt
12. Remove the final driven sprocket and the drive chain.
13. Disconnect the contact breaker point leads (yellow and blue) at the connectors.
14. Unscrew the nuts from the engine hanger bolts, and dismount the engine from the right side by raising it's rear slightly.

B. Engine Installation

1. Remount the engine in the reverse order of dismounting, however, attention should be given to the following points:

- Install the engine from the right side and tighten the hanger bolts. The battery ground cable terminal is installed together with the rear hanger bolt.
- Make sure that the generator cord and starting motor cord are not pinched when the left crankcase cover is installed.
- Make sure that the two mufflers on each side are properly connected with the muffler connecting band.
- Perform the following adjustments after the engine is installed.
Clutch adjustment
Drive chain slack adjustment
Carburetor adjustment

Fig. 53 (1) Battery ground cable

Fig. 54 (1) Generator cord
(2) Starting motor cord

Fig. 55 (1) Muffler connecting band

Fig. 56 (1) Breather cover

Fig. 57 (1) Cylinder head cover
(2) 6 mm copper washers

Fig. 58 (1) Cam chain tension adjuster
(2) Lock nut

Fig. 59
(1) Cam sprocket
(3) Camshaft
(2) Cam chain
(4) 7 mm bolt

3. CYLINDER HEAD, CYLINDER AND PISTON

A. Disassembly

1. Turn the fuel cock to the "STOP" position, disconnect the fuel lines at the tank, and dismount the fuel tank.
2. Remove the exhaust pipe and muffler.
3. Disconnect the tachometer cable.
4. Disconnect the high tension cords at the spark plugs, unscrew six 6 mm screws and remove the breather cover.
5. Remove the tappet hole caps, left and right side covers, unscrew twelve 6 mm screws and six bolts, and remove the cylinder head cover.

Note:

- Loosen the screws and bolts uniformly to relieve the stress gradually.

6. Loosen the lock nut of the cam chain tension adjuster (leave the wrench on the nut), turn the screw fully (approximately 90°) clockwise, and then tighten the lock nut.
In this condition the cam chain tensioner is not applying tension to the cam chain.
7. Unscrew two cam sprocket mounting bolts and remove the camshaft from the sprocket.
8. Remove the cam chain from the sprocket.
9. Separate the carburetor assembly from the cylinder head.
10. Unscrew the cam chain tensioner mounting bolt.

Fig. 60 (1) Cam chain tensioner
(2) Cam chain tensioner mounting bolt

Fig. 61 (1) Cylinder head

Fig. 62 (1) Cam chain guide

Fig. 63 (1) Cam chain tensioner

Fig. 64 (1) Cylinder (2) Cylinder groove

Fig. 65 (1) Piston pin clip

Fig. 66 (1) Rocker arm shaft
(2) 6 mm bolt

Fig. 67
Good
14. Remove the cylinder.

If the cylinder is tightly stuck pry the cylinder loose with a screwdriver placed in the groove at the base of the cylinder.
15. Remove the piston pin clip, piston pin, and the piston.

Note:

When removing the pin clip, exercise care not to drop the clip into the crankcase.
16. Remove the piston rings.
17. Screw a 6 mm bolt into the rocker arm shaft and remove the rocker arm shaft from the cylinder head cover.

B. Inspection

1. Inspect the camshaft bearing surfaces. Camshaft bearing surfaces should be smooth and shiny. If it is scratched or excessively worn, it should be replaced.
2. Measure the height of the cam with a micrometer.
Replace the camshaft if beyond the serviceable limit.

Fig. 68 (1) Micrometer
(2) Cam height

Fig. 69 (1) Dial gauge
(2) Camshaft

Fig. 70 (1) Cylinder gauge

Fig. 71 (1) Micrometer

Fig. 72 (1) Piston ring
(2) Feeler gauge

Fig. 73 (1) Piston ring
(2) Feeler gauge

Fig. 74 (1) Piston
(2) Cylinder gauge

Fig. 75 (1) Marks

(2) Piston
(3) Piston ring
7. Measure piston ring end gap.

Insert the piston ring into the skirt of the cylinder so that it is squarely positioned, and measure the gap with a feeler gauge.
8. Measure piston ring side clearance.

Install the rings on the piston and measure the side clearance of the piston ring in the ring groove with a feeler gauge.
9. Measure the piston pin hole using an inside micrometer or cylinder gauge.
10. Inspect the piston for damage, distortion and excessive wear.

C. Reassembly

1. Install the rocker arm and the rocker arm shaft in the cylinder head cover.
Install the rocker arm shafts with the side having a hole facing outward.
2. Install the piston rings on the piston with the marking on the rings toward the top.
Note:
When installing new rings on the piston, roll the rings in the ring grooves to assure proper clearance. If the rings roll smoothly, the clearance is satisfactory.
Use piston rings of the same maker as a set.
3. Install the piston on the connecting rod with the piston pin and clips so that the $\boldsymbol{\Delta}$ mark on the piston head points toward the front (exhaust side) as shown in the figure.

Note:

Always use new pin clips.

Fig. 76 (1) $\boldsymbol{\Delta}$ marks
4. Stagger the end gaps of the top, 2nd and oil rings 120° apart.
Install so that none of the gaps are on the piston boss axis or 90° away from it.
(Three-piece type oil ring)
a. When installing the oil ring, first place the spacer and then the rails in position.
b. The spacer and rail gaps must be staggered $2 \sim 3 \mathrm{~cm}(0.783 \sim 1.181 \mathrm{in}$.).
Note:
The gap of the oil ring refers to that of the spacer.

Fig. 77 (1) Piston (2) Rings

Fig. 77-1
(1) Top ring
(3) Rails
(4) Spacer

Fig. 78 (1) Cylinder gasket
(3) O-rings
(2) Dowel pins

Fig. 79 (1) Piston bases (2) Piston ring compressors

Fig. 80 (1) Cam chain tensioner
(2) Lock nut

Fig. 81 (1) Pins
(2) "UP" mark

Fig. 82 (1) Cylinder head gasket
(3) O-rings
(2) Dowel pins
6. Turn the crankshaft and place the piston base (Tool No. 07958-2500000) under No. 2 and 3 pistons, and install the piston ring compressors (Tool No. 079573230000) on the piston rings, and insert the pistons into the cylinder. When the No. 2 and 3 pistons have entered the cylinder, remove the bases and piston ring compressors. Next turn the crankshaft slightly and install the No. 1 and 4 pistons being careful not to expose the rings of the No. 2 and 3 pistons. Raise the cam chain at the same time.
7. With the cylinder held approx. 20 mm from the crankcase, install the cam chain tensioner in the cylinder, hold the tensioner down by hand and install the O ring, steel washer, and tighten the lock nut.
8. Insert the cam chain guide into the cylinder as shown in Fig. 81.
9. Install the cylinder head gasket, two dowel pins and two O-rings on the cylinder.
10. Place the cylinder head and hold the cam chain with a screw driver to prevent cam chain from dropping.
11. Tighten the twelve 8 mm nuts uniformly with the special tool (Tool No. 079063230000) to a torque of $2.0 \sim 2.2 \mathrm{~kg}-\mathrm{m}$. ($14.46 \sim 16.63 \mathrm{ft}-\mathrm{lbs})$ in the sequence shown in Fig. 83.
Next, install and torque two 6 mm flange bolts.
Mount the cam chain tensioner on the cylinder head with the aluminum washer and 6 mm bolt.
Note:
Exercise care not to drop nuts or washers into the cylinder head as it will be difficult to remove them.
12. Hold the cam chain sprocket and cam chain together and slide the camshaft through them from the right side, and set it on the bearings in the cylinder head. Install the cam chain on the cam sprocket.
13. Adjustment of valve timing

Remove the point cover, rotate the crankshaft in the clockwise direction and align the " T " (1.4) mark of the spark advancer to the timing mark. Next, position the camshaft so that the center of the cutout notch on the right end of the camshaft is aligned to the cylinder head flange surface.

Fig. 83

Fig. 84 (1) Cam sprocket
(3) Camshaft
(2) Cam chain

Fig. 85 (1) Cylinder head flange surface
(2) Cutout notch
(3) Spark advancer

Fig. 86
(1) Dowel pins
(2) Sealing rubbers

Fig. 87

Fig. 88 (1) 6 mm screw
(2) Chromium-plated copper washer
(3) Head side cover set plate
(4) Alminum washer

Fig. 89 (1) O-ring
17. Install the cylinder head cover with twelve 6 mm screws and six 6 mm bolts, and torque to $0.8 \sim 1.2 \mathrm{~kg}-\mathrm{m}(5.78 \sim 8.67$ lbs-ft) so that torque difference is not over $0.2 \mathrm{~kg}-\mathrm{m}$ ($\mathbf{1} .44 \mathrm{lbs}-\mathrm{ft}$).

Note:

- Insert fingers into the tappet hole cap opening and lift the valve tappet adjusting screw to check that they are properly meeting the valves.
- Use the six 6 mm copper washers as shown in Fig. 57.
- Install the head side cover set plate with washers mounted on both sides of the 6 mm screws (Chromium-plated copper washer on top and alminum washer on bottom).

18. Install O-rings on the dowel pins of the the left and right side covers, and install the side covers on the cylinder head.
19. Install the breather cover with six 6 mm screws.
Note:
High tension cord clips are mounted on both sides with the clips facing forward.
20. Adjust the cam chain by referring to page 12.
21. Adjust the tappets by referring to page 7.

4. VALVES AND VALVE SPRINGS

A. Disassembly

1. Remove the cylinder head by referring to section 3. A.
2. Compress the valve springs with a valve spring compressor (Tool No. 079573290000), remove the valve cotters, and the valves.
Note:
Do not compress the springs more than necessary. Compressing them excessively may damage the valve stem seals.
3. Drive the valve guide out of the cylinder head using the valve guide remover (Tool No. 07046-32301).

B. Inspection

1. Measure valve stem clearance.

Insert the valve into the guide and measure the clearance in both the X and Y directions using a dial gauge. Replace the valve and guide in set if clearance beyond the serviceable limit.
Drive the guide into the cylinder head using a valve guide driver (Tool No. 07942-3290100) and finish ream the guide to the proper size with the reamer (Tool No. 07984-0980000). Standard valve guide inside diameter for both the inlet and exhaust is $\mathbf{5 . 4 7 5} \sim \mathbf{5 . 4 8 5} \mathrm{mm}(\mathbf{0 . 2 1 5 3} \mathrm{in}$. \sim 0.2157 in .)

Fig. 91 (1) Valve guide remover

Fig. 90 (1) Valve spring compressor
(2) Cylinder head

Fig. 92 (1) Valve

Fig. 93 (1) Valve seat width

Fig. 94 (1) Dial gauge
(2) Valve

Fig. 95 (1) Vernier caliper
(2) Valve spring

Fig. 96 (1) Straight edge
(2) Feeler gauge

2. Check the valve seat contact width and if necessary recondition.
Apply a thin coat of red lead to the valve seat surface. Press the valve against the seat and rotate it to check if the contact width is uniform. If not, lap the valve, seat and again check the contact width. If necessary, recondition the valve seat using a valve seat grinder. Seat width $1.0 \sim 1.5 \mathrm{~mm} \quad(0.039 \sim 0.059$ in.).

Caution:

Use the valve seat grinder in accordance with the instruction manual.
3. Measure valve runout.

Place the valve on V-block and measure the runout of the valve with a dial gauge applied to the face of the valve while turning the valve. Replace the valve if the runout beyonds the serviceable limit.
4. Measure the valve spring.

Measure the free length of the valve spring with a vernier caliper.
5. Measure the flatness of the cylinder head. Place a straight edge on the cylinder head surface and measure the clearance at several points with a feeler gauge. If there is a clearance of over the serviceable limit, lap the cylinder head surface on the surface plate using lapping compound or replace the head if it cannot be repaired.

C. Reassembly

1. Wash all of the component parts in kerosene and reassemble the parts in the reverse order of disassembly.

Fig. 97 Component parts of the cylinder head
(1) Exhaust valve
(2) Inlet valve
(3) 10×1.6 O ring
(4) Exhaust valve guide
(5) Inlet valve guide
(6) Valve spring outer seat
(7) Valve spring inner seat
(8) Valve stem seal
(9) Inner valve spring
(10) Outer valve spring
(11) Retainer
(12) Cotter
(13) Valve rocker arm shaft
(14) Valve rocker arm

Note:

When installing the valves, apply a liberal amount of oil on the valve stem.
2. Install the cylinder head in accordance with section 3. C.

5. Oil Pump and Oil Filter

The oil pump is a trochoid type driven by the primary shaft. Screen and paper element filters are used to provide clean oil to the engine.

Lubricating System Block Diagram

Fig. 98 Oil Lubricating Diagram
$\begin{array}{llll}\text { (1) Oil cleaner element } & \text { (2) Oil pump } & \text { (3) Relief valve } & \text { (4) Oil screen filter }\end{array}$

A. Disassembly

Oil Pump

1. Drain the engine oil in accordance with section 2. A.
2. Remove the starting motor cover and the left crankcase cover.
3. Unscrew the 4 mm bolt and remove the pressure switch wiring. Next remove three 6 mm screws, and the oil pump.
4. Remove the cap and disassemble the relief valve and spring.

Fig. 99 (1) 4 mm bolt
(2) 6 mm screws

Fig. 101 (1) Oil screen filter

Fig. 102
(1) Feeler gauge
(2) Inner rotor
(3) Outer rotor

Fig. 103
(1) Feeler gauge
(3) Outer rotor
(2) Pump body

Fig. 104 (1) Relief valve seat

Oil Filter

1. Drain the engine oil in accordance with section 2. A.
2. Unscrew the center bolt to remove the oil filter.

B. Inspection

1. Measure the clearance between the inner and outer rotors.
Use a feeler gauge to measure the clearance between the rotors. If the clearance beyonds the serviceable limit, replace the pump.
2. Measure the clearance between the outer rotor and the pump body.
Use a feeler gauge to measure the clearance between the outer rotor and the pump body. If the clearance beyonds the serviceable limit, replace the pump.
3. Inspect the operation of the relief valve. Make sure that the relief valve is not stuck in the pump body. Also check for any foreign objects which may be lodged between the valve and seat.
4. Inspect the screen filter

Wash and inspect the screen filter. Replace the filter if damaged.

C. Reassembly

Oil Filter

1. Insert the oil filter center bolt through the oil filter case and assemble the spring, spring seat and element. Screw the center bolt into the engine.

Oil Screen Filter

1. Mount the screen filter on the lower crankcase.
2. Mount the oil pan on the engine with ten 6 mm bolts.

Oil Pump

1. Insert the drive pump shaft into the oil pump body and install the drive pin into the shaft.
2. Align the outer and inner rotor punch marks and install into the pump body (the surfaces with the punch marks may be set to the pump body side or the pump cover side).
3. Install the 47 mm O-ring on the oil pump body and install the oil pump cover with three 6 mm screws.
4. Install the relief valve and spring into the oil pump body, and install the cap.
5. Install the two O-ring collars, two 14 mm O-rings, and a 47 mm O-ring into the oil pump body and then install the oil pump on the crankcase with three 6 mm screws.
6. Connect the pressure switch wires.
7. Install the left crankcase with four 6 mm screws, and the gear change pedal.
8. Install the starting motor cover.

Fig. 105
(1) Oil filter center bolt
(2) 15×2.5 O-ring
(3) Oil filter case
spring
(4) $89 \times 4.5 \mathrm{~mm}$ O-ring
6) Oil filter spring seat
(7) Oil filter element

Fig. 106 (1) Punch marks

Fig. 107 (1) 47 mm O-ring
(2) Oil pump cover

Fig. 108 (1) O-ring collar

Fig. 110 (1) 25 mm snap ring
(2) Clutch assembly

Fig. 111 (1) Clutch adjuster

Fig. 112 (1) Clut ch lifter rod

6. CLUTCH

A. Disassembly

1. Drain the engine oil in accordance with section 2. A.
2. Remove the kick starter pedal.
3. Unscrew ten 6 mm screws and remove the R. crank case cover.
4. Unscrew the four clutch pressure plate mounting bolts, and remove the clutch pressure plate and four clutch springs.
5. Remove the clutch lifter joint piece.
6. Remove the 25 mm snap ring, shims (some engine may not have shims installed), and the clutch assembly from the main shaft.
7. Disassemble the clutch disc, clutch plate and clutch center from the clutch outer.
8. Remove the left crankcase cover.
9. Disconnect the clutch cable from the clutch lifter.
10. Unscrew the clutch adjuster lock bolt and remove the clutch adjuster from the left crankcase cover.
11. Pull out the clutch lifter rod.
B. Inspection
12. Measure the thickness of the friction disc. Measure the thickness with a vernier caliper and replace if beyond the serviceable limit.

Fig. 113 (1) Friction disc (2) Vernier caliper
2. Check the clutch plate for warp.

Place the clutch plate on the surface plate and measure the amount of warp using a feeler gauge. If the warp beyonds the serviceable limit, replace the clutch plate.
3. Measure the clutch spring.

Measure the free length of the clutch spring with a vernier caliper and replace if beyond the serviceable limit.
4. Inspect the rivets mounting the clutch outer to the driven gear for looseness, and replace the clutch outer if any of rivets are loose.

C. Reassembly

1. Assemble the clutch lifter rod into the main shaft so that the spherical end is toward the right side.
2. Apply grease to the clutch lifter and assemble it to the left crankcase cover together with the adjuster. Tighten the lock bolt and reconnect the clutch cable to the clutch lifter.
3. Install the clutch lifter rod, set the steel ball into the clutch lifter, and mount the left crankcase cover with four 6 mm screws.

Fig. 114 (1) Clutch plate
(2) Feeler gauge

Fig. 115 (1) Driven gear
(3) Rivets
(2) Clutch outer

Fig. 116 (1) Clutch lifter (2) Adjuster

Fig. 117 (1) Clutch center
(2) Clutch outer

Fig. 118 (1) Oil grooves

Fig. 119 (1) Joint piece (3) 25 mm snap ring
(2) Spacer

Fig. 120
(1) Bolts
(2) Clutch pressure plate
4. Install the clutch outer to the mainshaft and then, install the clutch center.
5. Apply engine oil on the friction discs (7 pcs .) and assemble them on the clutch center alternately with the clutch plates (6 pcs.), and then, assemble into the clutch outer.
Note:
When assembling the friction discs, assemble them on the clutch center so that the oil grooves are facing as per Fig. 118.
6. After assembling the friction discs and clutch plates, set them with the snap ring. Place a dial gauge against the end of the clutch assembly to check for looseness. If the measured value of looseness is greater than 0.1 mm (0.004 in.), install a spacer on the inside of the snap ring. Spacer are available in the thickness of $0.1,0.3$ and 0.5 mm .
7. Insert the clutch lifter joint piece into the mainshaft and fix the clutch plates with four pcs. each of the clutch spring, washer and 6 mm screw.
8. Install the R. crank case cover.
9. Ajast the clutch.

7. GEAR SHIFT MECHANISM

A. Disassembly

1. Disassemble the clutch in accordance with the section 6. A.
2. Remove the gear change pedal.
3. Remove the gear shift arm while holding the gear shift arm down.

Fig. 121 (1) Gear shift arm
4. Remove the shift drum stopper bolt and shift drum neutral stopper bolt, and then, remove the shift drum stopper and shift drum neutral stopper.
5. Unscrew the 6 mm screw and then, remove the oil guide plate and bearing set plate.
6. Unscrew the 6 mm screw and cam plate.
7. Disassemble the upper and lower crankcase and disassemble the transmission gears in accordance with the section 9. A.
8. Remove the neutral stopper switch from the gear shift drum.
9. Remove the shift drum guide screw from the upper crankcase and then remove the guide screw collar.
10. Remove the guide pin clip and guide pin and pull out the gear shift drum from the crankcase.

Fig. 124 (1) Guide pin clip
(3) Gear shift drum

Fig. 123 (1) Shift drum guide screw
(2) Guide pin

Fig. 125 (1) Gear shift drum
(2) Micrometer

Fig. 126 (1) Gear shift fork
(2) Micrometer

Fig. 127 (1) Gear shift forks
(2) Gear shift drum

Fig. 128 (1) Guide pin clips

B. Inspection

1. Measure the diameter of the gear shift drum with a micrometer and the shift fork with an inside micrometer. Replace any part which exceeds the serviceable limit.
2. Measure the width of the gear shift fork fingers with a micrometer. Replace if beyond serviceable limit.

C. Reassembly

1. Set the left, right and center gear shift forks into the upper crankcase as shown in Fig. 126, then install the gear shift drum.
2. Insert the guide pin into the shift fork and fix it with the guide pin clip.
Note:
Make sure that the guide pin clip is installed in the proper direction.
3. Place the counterbored section of the shift drum as shown Fig. 128, and install the steel ball, the spring cap, and the spring then lock with the shift drum screw.
Next, bend up the tab on the guide screw lock washer to lock the guide screw.
4. Align the neutral switch to the groove in the gear shift drum and lock in place with the 6 mm screw.
5. Assemble the transmission into the upper crankcase in accordance with section 10. C, and assemble the upper and lower crankcase.
6. Install the cam plate on the pin of the gear shift drum with the 6 mm flat head screw which has been coated with thread lock cement.

Note:

The pin and the pin hole in the cam plate must be aligned.
7. Attach the shift drum stopper spring to the drum stopper and to the drum neutral stopper as shown in Fig. 132, then tighten the drum stop bolt and neutral stop bolt. Also tighten the bearing set plate together.
8. Tighten the oil guide plate. After tightening, rotate the shift drum and check to be sure that each component part operates smoothly.

Note:

Check if the guide plate comes in contact with the primary drive gear.

Fig. 129 (1) Guide screw (4) Spring
(2) Guide screw lock washer
(3) O-ring
(5) Spring cap
(6) Steel ball
(7) Counterbored section

Fig. 130 (1) Gear shift drum (2) Neutral switch

Fig. 131 (1) Pin (2) Cam plate

Fig. 132 (1) Shift drum stopper spring
(2) Shift drum stopper
(3) Shift drum neutral stopper
9. Install the gear shift arm and make sure that it operates smoothly in both direction.
10. Install the clutch in accordance with section $6 . \mathrm{C}$.

8. CAM CHAIN TENSIONER

The cam chain tensioner is constructed of spring steel on which a layer of heat resistant rubber is vulcanized and a sheet of teflon cemented. It applies pressure against the cam chain and absorbs the shocks produced by the chain. The cam chain guide on the tension side of the cam chain also controls chain vibration.
An adjustment screw is located at the rear of the cylinder block.

Fig. 133
(1) Cam chain guide
(2) Cam chain tensioner
(3) Lock nut
(4) Screw

A. Disassembly

1. Remove the cam chain tensioner and the chain guide in accordance with section 3. A.

B. Inspection

1. Make sure that the gear of the cam chain tensioner adjuster is properly meshed with the rack, and inspect for smooth operation.
To adjust the cam chain, see page 13 .

C. Reassembly

1. Perform reassembly in accordance with section 3. C.

9. CRANKSHAFT AND CONNECTING ROD

A. Disassembly

1. Dismount the engine in accordance with section 2. A.
2. Disassemble the cylinder head, cylinder, and piston in accordance with section 3 . A.
3. Remove the generator cover and remove the rotor using a generator rotor puller. (Tool No. 07933-2160000)
4. Remove the point cover, and the special washer by removing the 6 mm bolt. Next, unscrew the three 5 mm screws and remove the contact breaker assembly and the spark advancer.
5. Remove the clutch and the gear shift arm in accordance with section 6. A.
6. Remove the starting motor cover, and dismount the starting motor.

Fig. 134 (1) Gear (2) Rack

Fig. 135 (1) Generator rotor
(2) Generator rotor puller

Fig. 136 (1) 6 mm bolt
(2) Special washer
(3) 5 mm screws
(4) Contact breaker assembly

Fig. 137 (1) Starting motor

Fig. 138 (1) Bearing set plate

Fig. 139 (1) Primary shaft (2) Primary shaft puller (3) Weight hammer

Fig. 140 (1) Primary chain (2) Starting clutch

Fig. 141 (1) Dial gauge
7. Place the engine upside down and unscrew the ten 6 mm bolts to remove the oil pan.
8. Unscrew ten 8 mm bolts and twelve 6 mm bolts from the lower crankcase. Loosen the 8 mm bolts in the reverse order shown in Fig. 151.
9. Then, put the engine in correct position and unscrew three each 8 mm and 6 mm bolts. Tap the upper crankcase lightly with a wooden hammer and separate the upper and lower crankcases.
10. Unscrew two 6 mm bolts and remove the bearing set plate.
11. Pull out the primary shaft using a primary shaft hammer (Tool No. 079363230100) and weight hammer (Tool. No. 07936-3230200). On the model CB550, use a primary shaft hammer (Tool No. 07936-3740100) and weight hammer (Tool No. 07945-3000500).

Note:

Disassembly of the primary shaft, transmission, and kick starter can be performed without removing the cylinder head, cylinder or piston. When removing lower crankcase, follow the sequence 10, 11, 9 and 8 above.
12. Remove the starting clutch from the primary chain.
13. Remove the primary chain and the cam chain from the crankshaft.

B. Inspection

1. Measure crankshaft runout

Support both ends of the crankshaft on V-block and measure the amount of bend in the crankshaft by applying a dial gauge to the center journal and rotating the crankshaft. If the runout beyonds the serviceable limit on the dial gauge, the crankshaft should be replaced.
2. Inspect the crankshaft journals for scoring and uneven wear with a micrometer. If any journal is out-of-round or tapered more than serviceable limit, the crankshaft should be replaced.
3. Measure the crankshaft journal wear. Cut a length of plasti gauge to the width of the bearing cap. Place the gauge on the bearing parallel to the crankshaft, assemble the crankshaft and torque down the crankcase in accordance with Fig. 151.
Disassemble the crankcase and measure the plasti gauge using the scale provided. If there is a clearance in excess of 0.08 $\mathbf{m m}$ (0.0031 in .), the bearing should be replaced.
Note:
When measuring with the plasti gauge, do not turn the crankshaft.

Selection of The Bearing

1. Remove the bearing, assemble and tighten the upper and lower crankcases. Refer to Fig. 151.
2. Measure the inside diameter of all the bearing seats in the vertical direction with a cylinder gauge and select out the corresponding alphabet from the table below.

mm (in.)	
C	$36.016 \sim 36.024$
B	$(1.4179 \sim 1.4182)$
A	$(1.4176 \sim 36.016$
$6.000 \sim 36179)$	

3. Measure the diameter of all the crankshaft journal with a micrometer and also select out the corresponding figure 1 or 2 from the table below.

1	2
$32.99 \sim 33.00$	$32.98 \sim 32.99$
$(1.2987 \sim 1.2992)$	$(1.2983 \sim 1.2987)$

4. According to the alphabet and the figure from item 2 and 3 , pick out the proper bearing from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

Crankshaft classification No.	1	2
Crank case classification mark	B	
C	(Brown)	(Black)
B	C	B (Green)
(Brown)		
A	D (Yellow)	C (Green)

Fig. 142 (1) Plasti gauge

Fig. 143 (1) Cylinder gauge

Fig. 144

Note:

The lower crankcase and crankshaft are marked with letters or number at the factory. These are production codes and should not be used or refered to during servicing or repair.

Fig. 145 (1) Connecting rod cap

Fig. 146 (1) Connecting rod code number

Fig. 147 (1) Key (projection)
5. Measure connecting rod large end wear. Separate the cap from the connecting rod and after setting the plasti gauge in place, torque the two rod nuts to $2.0-2.2$ kg-m (14.46-15.91 lbs-ft).
Disassemble the cap and measure the plasti gauge. Replace the bearing with new one if beyond the serviceable limit.

Note:

Do not turn the crankshaft while the plasti gauge is installed.

Selection of The Bearing

1. Measure crankshaft pin diameter with a micrometer and select out the corresponding alphabet from the table below.

A	B
$34.99 \sim 35.00$	$34.98 \sim 34.99$
$(1.3775 \sim 1.3780)$	$(1.3771 \sim 1.3775)$

2. Select out the bearing from the table below which coincides with the number $(1,2,3)$ stamped on the large end of the connecting rod.

Crank pin classification mark Connecting rod code No.	A	B
3	B (Brown)	A (Black)
2	C (Green)	B (Brown)
1	D (Yellow)	C (Green)

Note:

- The numbers marked on the crankshaft are production codes and should not be referred to during servicing.
- The bearings must be installed on the connecting rod with the key toward the front.

6. Method of designating connecting rod weight.
When replacing connecting rod, replace with one having the same weight code. The weight code is stamped at the large end of the connecting rod. When replacing all of the connecting rods, the tolerance of the respective rods should be within 5 grams.

Note:

In the connecting rod weight, that weight of cap and two bolts are included but does not include the bearings.
7. Measure axial clearance using a feeler gauge.
Replace if beyond the serviceable limit
8. Measure the connecting rod small end. Measure the diameter of the connecting rod small end with an inside dial gauge. Replace if beyond serviceable limit.

	Code	Weight (gr.)
A	$281 \sim 285$	
B	$286 \sim 290$	
C	$291 \sim 295$	
D	$296 \sim 300$	
E	$301 \sim 305$	
F	$306 \sim 310$	

Fig. 148 (1) Weight code number

Fig. 149 (1) Feeler gauge
(2) Connecting rod

Fig. 150 (1) Inside dial gauge

Fig. 151 (1) Starting clutch
(2) Starter gear
(3) Primary shaft

C. Reassembly

1. Install the primary chain and cam chain on the crankshaft.
2. Install the crankshaft into the lower crankcase.
3. Position the starting clutch and starter gear as in Fig. 150, then drive the primary shaft in from the right to left. Exercise care in the needle bearing assembly sequence shown in Fig. 165.

Fig. 1528 mm mounting bolts

Fig. 154 (1) 6 mm bolts
(2) 8 mm bolts

Fig. 155 (1) Oil pan

Fig. 156
(1) Dowel pin hole
(2) Dowel pin
4. Install the bearing set plate with two 6 mm bolts.
5. Apply a thin coat of gasket paste on the mounting flange of the lower crankcase (heavy coat will cause the paste to fall inside the crankcase).
Install two dowel pins, mount the upper crankcase on the lower crankcase.

Fig. 1536 mm mounting bolts
6. Place the engine upside down so as not to separate the parting surfaces by holding them by hands and install the ten 8 mm bolts. Torque the 8 mm bolts in the sequence shown in Fig. 151 to a torque of $2.3-2.5 \mathrm{~kg}-\mathrm{m}$. ($16.63-18.08$ lbs-ft).
Next, tighten thirteen 6 mm bolts. (Fig. 152)

Note:

Note position of the two 8 mm bolts which are stamped on the bolt head with numeral " 9 ".
7. Position the upper crankcase on top and install with three each, 6 mm and 8 mm bolts. (Fig. 153)

Note:

Note position of the two 8 mm bolts which are stamped on the bolt head with numeral " 8 ".
8. Install the oil screen filter and mount the oil pan with ten 6 mm bolts.
9. Mount the starting motor with two 6 mm screws.
10. Install the gear shift arm in accordance with section 7. C.
11. Install the clutch in accordance with section 6 . C.
12. Insert the spark advancer dowel pin into the pin hole in the crankshaft, and then mount the contact breaker with three 5 mm screws.
13. Install the special advancer washer with the 6 mm bolt, and install the point cover.
14. Mount the generator rotor with the 10 mm bolt.
15. Install the generator cover.
15. Assemble the piston, cylinder, cylinder head, and head cover in accordance with section 3. C.

Fig. 157 (1) Generator rotor
(2) 10 mm bolt

Fig. 158 (1) 18 mm snap ring
(2) Return spring

Fig. 159 (1) 12 mm snap ring
(2) Kick starter shaft

Fig. 160 (1) Primary drive gear (2) 20 mm snap ring

Fig. 161 (1) 30 mm snap ring
(2) Primary driven sprocket

Fig. 162 (1) 6 mm flat head screws
(2) Starting clutch outer

Fig. 163 (1) Dial gauge

Primary Shaft

7. Remove the primary shaft in accordance with section 9. A, and remove the 20 mm snap ring and primary drive gear.
8. Remove the side collar and pull out the \# 6205 ball bearing.
9. Remove the 30 mm snap ring, primary driven sprocket, starting clutch, and pull out the damper rubbers.
10. Unscrew the three 6 mm flat head screws and remove the starting clutch outer.

B. Inspection

1. Measure gear backlash.

Set the pointer of a dial gauge against the tooth of the gear and measure the backlash.
2. Inspect the dogs and replace any gears with excessively worn dogs. Also, make sure that the gears slide smoothly over the splined shaft.

C. Reassembly

Primary Shaft

1. Install the starting clutch outer and primary driven sprocket hub with the three 6 mm flat head screws coated with thread lock cement, and then stake the screw heads with a punch to prevent loosening.

Fig. 164 (1) 6 mm flat head screw

Fig. 165 (1) Primary driven sprocket
(2) Damper rubbers
4. Mount the starting clutch gear on the starting clutch, insert the needle bearing and 25 mm spacer into the starting clutch gear, fit the 25 mm thrust washer and the snap ring on the primar shaft, and install the primary shaft in the crankcase.

Fig. 166 (1) Starting clutch gear
(2) Needle bearing $(25 \times 29 \times 17)$
(3) 25 mm spacer
(4) 25 mm thrust washer
(5) 25 mm snap ring
(6) 22 mm thrust washer

Kick Starter

5. Reassemble the kick starter components in accordance with Fig. 166.
Note:
Do not forget to install the 18 mm washer.

Transmission

6. Assemble the transmission gears on the respective main and counter shafts.

Fig. 167 (1) Kick starter pinion
(2) 20 mm thrust washer
(3) Starter pinion set spring
(4) Kick starter rachet
(5) 15 mm thrust washer
(6) Kick starter rachet spring
(7) Rachet guide plate
(8) Chain guide thrust
(9) 12 mm snap ring
(10) 18 mm washer
(11) 18 mm snap ring
(12) Kick starter spring
(13) Kick starter spindle
(1) 57 mm bearing set ring
(2) 25 mm snap ring
(3) 5205 special ball bearing
(4) 24.5 mm O-ring
(5) Transmission counter shaft
(6) $33 \times 57 \times 7$ oil seal
(7) Drive sprocket (17T)
(8) Drive sprocket fixing plate
(9) Gear shift fork pin
(10) 20 mm needle bearing
(11) Counter shaft low gear (40 T)
(12) Counter shaft fourth gear (29 T)
(13) 25 mm thrust washer
(14) Counter shaft third gear (33T)
(15) 25 mm lock washer
(16) 25 mm thrust washer
(17) Counter shaft second gear (36 T)
(18) Counter shaft top gear (27 T)
(19) 52 mm bearing set ring
(20) 5205 HS ball bearing
(21) Transmission main shaft (24 T)
(22) Main shaft fourth gear (28 T)
(23) Main shaft second, third gear ($22 \mathrm{~T}, 26 \mathrm{~T}$)
(24) Main shaft top gear (30 T)
(25) 20 mm thrust washer
(26) 22 mm needle bearing
(27) $8 \times 34 \times 8$ oil seal

Fig. 168
7. Install the two each bearing set rings and the dowel pins in the upper crankcase, and install the transmission.
8. Reassemble the upper and the lower crankcase in accordance with section 9. C.
9. Install the clutch in accordance with section 6. C.
10. Mount the engine in the frame in accordance with 2. B.

Fig. 169 (1) Bearing set rings (2) Dowel pins

Fig. 170 (1) Throttle return spring
(2) Link lever

$\begin{array}{lll}\text { Fig. } 171 & \text { (1) Hex. nuts } \\ & \text { (2) Dust plate B }\end{array}$

Fig. 172
(1) Link arm
(2) Adjuster holders

Fig. 173 (1) Carburetor top

Fig. 174 (1) Tongued washer

Fig. 175 (1) Link arm
4. Remove the adjuster holders from the link arm.
5. Unscrew the eight 6 mm flat head screws from the stay plate and remove the carburetor unit.

Throttle Valve And Jet Needle

6. Unscrew the two carburetor top mounting screws from each carburetor and remove the tops.
7. Position the throttle valve to full open and straighten the tab of the two tongued washers.
8. Remove the 6 mm bolt from the shaft end and remove the link arm in direction A using a screw driver.
9. Loosen the 6 mm bolt on the throttle side about $1 / 2$ turn, insert a screwdriver between the throttle shaft and link arm and pry loose in direction A.

Fig. 176
(1) 6 mm bolt
(2) Throttle shaft

Fig. 177 (1) 3 mm screws
(2) Valve plate

Fig. 178 (1) Adjusting screw
(2) Adjuster holder

Fig. 179 (1) Adiuster holder

Fig. 180 (1) Leaf spring
(2) Main jet

Fig. 181 (1) Float
(2) Float arm pin

Fig. 182 (1) Valve seat
(2) Clip plate

Fig. 183 (1) Floats
(2) Float level gauge

Float, Main Jet, And Slow Jet

1. Remove the float chamber body.
2. Remove the leaf spring and the main jet.
3. Pull out the float arm pin and remove the float.
4. Disengage the clip plate and remove the valve seat.

B. Inspection

1. Fuel level adjustment.

Position the float so that the float arm barely touches the tip of the float valve. Measure the distance from the flange to the top of the float with the float level gauge. The standard value is 22 mm (0.89 in.)

C. Reassembly

Float, Main Jet, And Slow Jet

1. Install the valve seat with the clip plate.
2. Install the float.
3. Place the leaf spring on the main jet, and install them on top of the needle jet holder.
4. Install the float chamber body.

Adjuster Holder

1. Insert the coil spring B and spring seat B into the adjuster holder. Position the throttle valve to about $1 / 2$ open and insert approximately $1 / 4$ of the connector shaft into the holder window. Install them while holding the spring seat down with a thin screwdriver.
2. Mount the carburetor on the stay plate in accordance with section 7 and 8.

Throttle Valve And Jet Needle

1. Install the jet needle on the throttle valve.
2. Place two each spring washers and 3 mm screws on the valve plate, and then place the tab of the valve plate to the slot of the throttle valve and push down to the bottom. Then rotate the valve plate 90° toward the link arm and install the 3 mm screws.
3. Install the throttle valve in the carburetor body so that the throttle valve cutaway section is toward the choke valve.

Carburetor setting data	
Description	No.
Main jet	$\# 100$
Air jet	$\# 150$
Slow jet	$\# 40$
Throttle valve	$\# 2.5$
Air screw opening	$1 \pm 1 / 8$

Fig. 184 (1) Adjuster holder (2) Coil spring B

Fig. 185 (1) Valve plate
(3) Spring washer
(4) Throttle valve

Fig. 186 (1) Cutaway section
(2) Choke valve

Fig. 187
(1) 6 mm bolt
(3) Link arm
(2) Throttle shaft

Fig. 188 (1) Tongued washer

Fig. 189 (1) Rubber pipe
(2) T type joint

Fig. 190
(1) Return spring
(2) Spring set plate
4. Unscrew the 6 mm bolt from the throttle shaft and push the spherical end of the link arm into the throttle shaft while pulling up the throttle shaft.
5. Install the tongued washer with the tongue positioned as shown in Fig. 187, tighten the 6 mm bolt, and then bend up the washer tongue against the bolt head.
6. Install the carburetor top with the two 5 mm screws.
7. Combine the two carburetors with the T type joint and the rubber pipe.
8. Mount the spring set plate, and then hook up the return spring.
Position the four carburetors, install the set plate, and tighten with the eight 6 mm flat head screws.
9. Install the dust plate A, and mount the adjuster holder to the link arm.

$\begin{array}{ll}\text { Fig. } 191 \text { (1) Dust plate A (3) Link arm } \\ & \text { (2) Adjuster holder }\end{array}$

Fig. 192 (1) Coil spring B
(2) Cap nut
11. Install the special washer D , dust plate B , and flat washer on the adjuster screw and tighten with the nuts.

$\begin{array}{lll}\text { Fig. } 193 & \text { (1) Special washer D } & \text { (3) Washers } \\ & \text { (2) Dust plate B } & \text { (4) Nuts }\end{array}$
12. Connect the throttle return spring on the link lever, being careful not to damage the hook.
13. Install and route the two fuel tubes as shown in Fig. 193.
14. Mount the carburetor unit on the engine in the reverse order as described in section 2. A.

Fig. 194 (1) Fuel tubes

5. CHASSIS

1. FRONT WHEEL AND FRONT BRAKE

Fig. 195
(1) Axle shaft
(2) $5 \times 15 \mathrm{~mm}$ oval screw
(3) Speedometer gear box
(4) $8 \times 102 \mathrm{~mm}$ bolt
(5) Gear box retainer cover
(6) Gear box retainer
(7) O-ring
(8) 6302 R ball bearing
(9) Front axle distance collar
(10) Front spoke B
(11) Front wheel hub
(12) Front wheel tube
(13) Front wheel tire
(14) Front tire flap
(15) Wheel balancer
(16) Front spoke A
(17) Front wheel rim
(18) 6302 R ball bearing
(19) 22368 dust seal
(20) Front wheel bearing retainer
(21) Front wheel collar
(22) Front wheel axle nut

Front Wheel

A. Disassembly

1. Place a suitable block under the engine to raise the front wheel off the ground.
2. Disconnect the speedometer cable from the speedometer gear box.
3. Unscrew the axle holder mounting nuts and remove the front wheel assembly from the front fork.
4. Unscrew the front wheel axle nut and remove the front axle.

Fig. 196 (1) Speedometer cable

Fig. 197 (1) Front axle nut
(2) Front axle

Fig. 198 (1) Front wheel bearing retainer

Fig. 199 (1) Disc mounting nuts
(2) Tongued washers

Fig. 200 (1) Dial gauge (2) Front brake disc

Fig. 201 (1) Dial gauge
5. Remove the bearing retainer (Tool No. 07910-3230100) from the wheel hub, and the dust seal from the bearing retainer.
6. To remove the brake disc from the wheel, first, straighten the tongues on the tongued washers, and unscrew the disc mounting nuts.
7. Remove the speedometer gear box and retainer cover from the opposite side.
8. Remove the front wheel bearing.

B. Inspection

1. Checking the brake disc.

Place the disc on a surface plate and measure the trueness using a dial gauge as shown in Fig. 199. Replace the disc if beyond the serviceable limit.
2. Checking rim wobble and wheel runout. Spin the wheel by hand and check both wobble and runout using a dial gauge as shown in Fig. 200.
3. Checking the wheel bearings.

Measure bearing wear in both axial and radial directions.
4. Check for loose or bent spokes.

Tighten loose spokes, and straighten or replace bent spokes.
5. If tire pressure is low, check for leaks around the valve stem and also the valve.
6. Check the condition of the tire both inside and outside for cuts, bruises, and imbedded nails.
7. Check to be sure that the tire is correctly inflated.

Tire inflation pressure: $1.3 \mathrm{~kg} / \mathrm{cm}^{2}$ (25.6 psi)
8. Check if air leaks from the tire valve.
C. Reassembly

1. Drive the 6302 R wheel ball bearing into the hub using a bearing driver.
On the model CB 550, use driver attachment (Tool No. 07946-935020) and driver handle (Tool No. 07949-6110000).
2. Install the dust seal in the wheel bearing retainer, mount the retainer into the wheel hub, and install the O-ring into the hub.
3. Install the gear box retainer cover on the gear box retainer so that the cover matches the slot.

Fig. 202 (1) Dial gauge
(2) Ball bearing

Fig. 203 (1) Bearing driver

Fig. 204 (1) Gear box retainer
(2) O-ring

Fig. 205 (1) Tongued washers

Fig. 206
(1) Gear box retainer
(2) Speedometer gear box

Fig. 207 (1) Balance marking
(2) Balance weight

Fig. 208

Front disc brake

The disc brake system consists of the brake lever and master cylinder on the right handle bar, caliper mounted on the front fork left side, and the special stainless steel brake disc mounted on the wheel hub.
(Operation)

1. When the brake lever (1) is gripped, the cam (2) at the base of the lever actuates a piston of the master cylinder.
2. The piston moves the primary cup (3) which blocks the passage to the reservoir and pressurizes the fluid within the master cylinder. This pressure is transmitted to the caliper chamber through brake hose B (4), 3 way joint (5), and brake hose A (7). Also, the stop light pressure switch (6) mounted on the 3 way joint is actuated.
3. The hydraulic pressure within caliper chamber A applies pressure against piston (9), which forces pad A (10) against the brake disc. Since the caliper assembly is mounted on an arm which pivots at the front fork, it is free to swivel, therefore, the reaction from pad A (10) is transmitted to pad B, resulting in equalized pressure being applied by the pads to both sides of the brake disc.

(1) Front brake lever
(5) Three way joint
(9) Piston
(2) Front brake lever cam
(6) Stop switch
(7) Front brake hose A
(4) Frimary cup
(8) Caliper A

Fig. 209

A. Disassembly

1. Remove the front wheel.
2. Unscrew the oil joint bolt and disconnect the brake hose.

Fig. 210 (1) Oil joint (2) Oil joint bolt (3) Brake hose
3. Unscrew the three caliper mounting bolts and a caliper adjusting bolt, and remove the caliper assembly.
4. Unscrew the two caliper set bolts and separate caliper A and B.

Fig. 211 (1) Caliper mounting bolts
(2) Caliper adjusting bolt
(4) Caliper B
(3) Caliper set bolts
(5) Caliper A

Fig. 213 (1) Joint bolt
(2) Master cylinder unit
(3) Brake hose
(4) Master cylinder mounting bols
5. Remove pad A and piston from caliper A.

Use compressed air to remove the piston.
6. Remove pad B from caliper B.
7. Unscrew the master cylinder joint bolt and remove the brake hose.
8. Unscrew the master cylinder mounting bolts and remove the master cylinder unit from the handle bar.
9. Disassemble the master cylinder.

10. Remove the boot and remove the snap ring from the master cylinder body with the snap ring plier (Tool No. 079143230000) Next, remove the 10.5 mm washer, piston, secondary cup, spring, and check valve.

B. Inspection

1. Checking the wear of the disc brake pad. Red grooves are provided for both pad A and B as a wear limit indicator. When the pad is worn to this red groove, the pad should be replaced. After replacing the pads, adjust the clearance between the brake disc and pad to 0.15 $\mathbf{m m}(0.006 \mathrm{in}$.) with the caliper adjusting bolt.
Adjust by turning the caliper adjusting bolt until the pad drags slightly against the brake disc, and from this position back off $1 / 2$ turn and tighten the lock nut.
. Checking the caliper cylinder and piston. Measure the inside diameter of the caliper cylinder and the outside diameter of the piston using a cylinder gauge and a micrometer. If the clearance is greater than serviceable limit. replace the part.

Fig. 215
(1) Master cylinder body
(3) Special pliers
(2) Snap ring

Fig. 216
(1) Pad B
(3) Brake disc
(4) Wear limit indicator

Fig. 217
(1) Caliper cylinder
(3) Piston
(2) Cylinder gauge
(4) Micrometer

Fig. 218 (1) Master cylinder
(2) Cylinder gauge

Fig. 218-1 (1) Caliper B
(2) Pad B
(3) Apply grease to part marked (X)

Fig. 219
(1) Caliper B
(3) Pad A
(3) Pad A

Fig. 220 (1) Primary cup
3. Checking the master cylinder and piston. Measure the inside diameter of the cylinder and the outside diameter of the piston using cylinder gauge and a micrometer. If the clearance is greater than serviceable limit, replace the part.

C. Reassembly

1. Perform reassembly in the reverse order of disassembly.
2. Assemble pad A and B.

Note:

Apply silicone sealing grease on the pads sliding surfaces of the caliper before assemblying pad A and B. This serves as a dust preventative as well as water repellent. Do not apply grease on the pad friction surface.
3. Apply a coat of brake fluid to the inside surface of the cylinder.
4. Instail the check valve to the return spring and install them in the cylinder.

CAUTION :

When installing the check valve and return spring in the cylinder, make sure that the valve is facing correctly and that the spring is in correct position.
5. Apply a thin coat of brake fluid to the outside surface of the primary cup.
Install the primary cup taking care not to allow dust to attach to it or not to damage it. Make sure that the cup is not inclined or not reversed in the cylinder.

Note:

When the primary cup has been disassembled, replace it with a new one.
6. Install the 18 mm internal snap ring.

Turn the snap ring to check for proper fit.

Fig. 221 (1) Diaphragm
(2) Brake fluid

D. Brake adjustment

When the brake has been disassembled always perform the air bleeding operation of the hydraulic brake and then adjust the brake.

1. Brake lever free play

Lever free play of $2 \sim 5 \mathrm{~mm}(0.08 \sim 0.2$ in.) measured at the end of the lever is normal. If the play is excessive, inspect the brake system and replace any worn or defective part.
2. Brake fluid level

Fill the reservoir with brake fluid to the level line.
Note:
Brake fluid will damage paint finish, rubber parts, and meter components, therefore, exercise care in handling and immediately wipe in case of spillage.

- To air bleeding the brake system refer page 15 .

Fig. 222

Fig. 223 (1) Diaphragm
(2) Brake fluid
2. REAR WHEEL AND REAR BRAKE
(1) 6304 U ball bearing
(2) Distance collar
(3) Wheel balancer
(4) Tire
(5) Tube
(6) Tire flap
(7) Wheel hub
(8) Rim
(9) O-ring
(10) Wheel damper A
(II) Wheel damper B
(12) Final driven flange
(13) Distance collar B
(14) 6305 U ball bearing
(15) Bearing retainer
(16) 10×48 driven sprocket bolt
(17) Side collar
(18) Final driven sprocket
(19) 34559 oil seal
(20) O-ring
(21) Sprocket side plate
(22) Tongued washer
(23) 10 mm nut

Fig. 224

Fig. 225 (1) Brake stopper arm
(2) Stopper arm cushion rubber
(3) 8 mm nut
(4) Panel stopper bolt
(5) Lock pin

A. Disassembly

1. Remove the rear brake rod.
2. Remove the rear brake panel stopper bolt to disconnect the brake stopper arm.

Fig. 226 (1) Cotter pin
(2) Axle nut
(3) Adjusting bolt
(4) Lock nut
(5) Lock bolt
(6) Chain adjusting stopper
3. Remove the both left and right mufflers.
4. Loosen the drive chain adjusting bolt on both sides, remove the cotter pin, and loosen the axle nut.
5. Push the wheel forward, and lift the chain off the driven sprocket. Remove the lock bolts, chain adjusting stoppers and pull the wheel rearward to remove the wheel and axle from the rear wheel.
6. Straighten the tongued washers and unscrew the four nuts to remove the driven sprocket.
7. Remove the rear wheel bearing retainer with the bearing retainer remover, and drive out the bearing from the hub.

Note:

The bearing retainer has a left hand thread.

Fig. 227
(1) Driven sprocket
(2) Tongued washer
(3) Lock nut

Fig. 228 (1) Bearing retainer remover
(2) Bearing driver
8. Remove the two cotter pins and washer from the brake shoe anchor posts.

B. Inspection

1. Check rim runout and wobble.
2. Check rear axle shaft runout.
3. Check brake lining wear.
4. Check brake drum wear.
5. Check ball bearing wear.
6. Check for loose spokes, bending and damage. Tighten, straighten or replace as necessary.
7. Check tire on both inside and outside for cuts, bruises, and imbedded of nails. Repair or replace as necessary.

Fig. 229 (1) Brake shoes
(3) Cotter pins
(4) Brake shoe spring

Fig. 230
(1) Vernier caliper
(2) Brake shoe

Fig. 231 (1) Vernier caliper

Fig. 232
(1) Dial gauge
(2) Ball bearing

Fig. 233

Fig. 234
(1) Cotter pin
(4) Lock nut
(2) Axle nut
(5) Lock bolt
(3) Adjusting bolt

Fig. 235 (1) Adjusting bolt
(2) Brake pedal

Fig. 236 (1) Adjusting nut

C. Reassembly

1. Perform reassembly in the reverse order of disassembly.
2. Install the brake shoes on the brake panel.

Note:

Pay special attention not to allow oil, grease, dust or dirt to get inside the brake shoes and wheel hub.
Use thread lock cement when installing the bearing retainer.
Apply grease on the friction surfaces of the flange and wheel hub.
3. Fill the cavity in each ball bearing and inside the wheel hub with grease. Install the bearings using the bearing driver B attachment (Tool No. 07945-3230200), on the model CB550, use a driver attachment (Tool No. 07946-3600000) and driver handle (Tool No. 07949-6110000), taking care not to allow the space collars to incline.
4. Mount the brake panel on the hub and the drive chain on the sprocket. Insert the wheel axle through the assembled wheel hub, and mount the wheel on the rear fork.
5. After completing the reassembly, adjust the slack of the drive chain.
a. Normal chain slack is $10 \sim 20 \mathrm{~mm}$ (3/8~3/4 in) with a slight force.
b. Loosen the axle nut and adjust the drive chain with the adjusting bolt, making sure the adjuster marks on both sides are in the same position when completed.
6. Install the rear brake stopper arm, and adjust the height and play of the brake pedal.
a. Adjust the height of the pedal with the adjusting bolt.
b. Adjust the free play of the pedal to $20 \sim 30 \mathrm{~mm} \quad\left(3 / 4 \sim 1^{3 / 16}\right.$ in $)$ with the adjusting nut on the end of the brake rod.
7. Chack to be sure that is correctly inflated.
Tire inflation pressure : $2.0 \mathrm{~kg} / \mathrm{cm}^{2}(28.5)$

3. STEERING

The steel tube handle bar is mounted on the front fork top bridge with the handle bar holders. The top bridge is bolted to the front fork and steering stem. The steering stem is mounted on the frame head pipe.

A., Disassembly

1. Unscrew two bolts to remove the master cylinder unit.
2. Disconnect the clutch cable at the clutch lever.
3. Remove the lighting switch and disconnect the throttle cable from the throttle grip pipe.
4. Remove the head light unit from the head light case and disconnect the wiring at the harness within the case.
5. Unscrew four bolts, remove the handle bar holders and disconnect the wire harness.

Fig. 237 (1) Steering handle bar
(2) Handle bar holder
(3) Steering stem nut
(4) Steering stem washer
(5) Fork top bridge
(6) Steering head top nut
(7) Steering head top cone race
(8) Steel ball
(9) Steering top ball race
(10) Steering head
(11) Steering stem
(12) Steering bottom ball race (13) Steel ball
(14) Steering bottom cone race
(15) Steering head dust seal

Fig. 238 (1) Master cylinder unit
(3) Lighting switch (2) 6 mm bolts

Fig. 239 (1) Upper handle bar holders (2) Handle bar

Fig. 240
(1) Fork top bridge
(3) Stem nut
(2) Fork top bolts
(4) 8 mm bolts

Fig. 241 (1) 48 mm pin spanner
(2) Steering stem head nut

Fig. 242 (1) Steel balis

Fig. 243 (1) 48 mm pin spanner
(2) Steering stem head nut
6. Unscrew the two mounting bolts and remove the speedometer and tachometer.
7. Unscrew the stem nut, remove the 8 mm bolts and the fork top bridge.
8. Remove the front fork.
9. Unscrew the steering stem head nut with the 48 mm pin spanner (Tool No. 07902200000).
10. Remove the steering stem out the bottom. Note:
\#8 Steel balls will drop out, therefore, exercise care not to loose them.

B. Inspection

1. Check the handle bar for twisting and damage.
2. Check the steering stem for twisting and cracking.
3. Check the steel balls for cracks and wear.
4. Check the cone race for wear.
5. Check the stop for deformation or craks.

C. Reassembly

1. Mix the steel balls in grease and assemble 18 into the upper race and 19 into the lower cone.
2. Install the steering stem into the head pipe being careful not to drop the steel balls.
3. Assemble the top cone race and tighten the steering stem head nut.
First tighten the steering head top thread fully, then back it off just to the point where the handlebar can be turned with reasonable ease.

Note:

Before assembly, wash the cone and ball races, and steel balls. Mix the balls in new grease.
4. Assemble the front fork.
5. Assemble the front fork top bridge, and mount the speedometer and tachometer.
6. Install the handle bar.

Note:
Align the punch marks on the handle bar to the parting surface of the holder.

Fig. 244 (1) Punch marks

Fig. 245 (1) Clutch cable (4) Wire harness
(2) Front brake hose (5) Fork top bridge
(3) Throttle cable

4. FRONT SUSPENSION

The front fork unit consist of a lightweight aluminium front fork bottom case with a dual action telescoping shock absorber oil damper. Cushioning travel is 91 mm (3.15 in .) on compression and 31 mm (1.22 in .) on extension strokes.

Fig. 246 Front fork unit
(1) Front fork bolt
(2) O-ring
(3) Lock nut
(4) Front fork pipe
(5) Front suspension spring
(6) Front fork boot
(7) Damper rod
(8) Snap ring
(9) Oil seal
(10) Holder
(11) Collar
(12) Front fork bottom case
(13) Damper case
(14) Axle holder
(15) Plain washer
(16) Spring washer
(17) Nut

Fig. 247 (1) Caliper mounting bolts
(2) Adjusting screw
(3) Caliper set bolts
(4) Caliper B
(5) Caliper A

A. Disassembly

1. Loosen the fork bolt, remove the drain plug and drain the damper oil.
2. Remove the front wheel.
3. Unscrew the three caliper mounting bolts and an adjust.ng screw, and remove the caliper from the left front fork.
4. Unscrew the $8 \times 56 \mathrm{~mm}$ and the $10 \times$ 35 mm bolts, and pull the forks off the bottom.
5. Unscrew the front fork bolt, loose from the piston rod lock nut, and remove the front fork spring and cushion spring seat.
Separate the front fork pipe and bottom case.
6. Unscrew the 8 mm bottom case bolt using a hollow set wrench (Tool No. 079173230000) and remove the damper unit from the bottom case. (Fig. 252)

Fig. 250
(1) Front fork bolt
(7) 8 mm bolt
(2) Lock nut
(8) Damper unit
(3) Cushion spring seat
(4) Snap ring
(5) Oil seal
(9) Fork spring
(6) Bottom case
(10) Fork pipe
(11) Special tool

B. Inspection

1. Check the front suspension spring.
2. Check the fork pipe and bottom case for damage or looseness.
3. Check the oil seal for scratches and damage.
4. Check for excessive clearance between the shock absorber piston and the cylinder.

C. Reassembly

1. Reassemble in the reverse order of disassembly. Take care not to allow dust, or other foreign matters to adhere to the component parts.
2. Install the fork pipe into the bottom case. Apply a coat of thread lock cement to the socket bolt and tighten it using a socket wrench.
3. Apply a coat of Honda ATF to both sides of the oil seal and install it using a fork seal guide (Tool No. 07947-3290000).

Note:

- Do not forget to install the snap ring.
- Replace the removed seal with a new one.

4. Apply a coat of thread lock cement to the threaded part of the damper. Making sure that the 8 mm lock nut is completely screwed on the threaded part of the damper, tighten the fork bolt.
5. Remove the front fork bolt and pour a specified amount of Honda ATF into the front fork pipe.
Capacity: $155 \sim 165 \mathrm{cc}(5.3 \sim 5.6$ oz.)
(at disassembly)
6. Install and tighten the front fork bolt.

Fig. 251 Measuring the free length

Fig. 252 (1) Fork pipe

Fig. 252-1 (1) Oil seal
(2) Fork seal guide

Fig. 253 (1) 8 mm setting bolt
(2) 10 mm setting bolt

Fig. 254
(1) Pad B
(4) Nut
(2) Pad A
(5) Caliper adjusting screw
(3) Brake disc

Fig. 255 (1) Rear fork pivot collar
(2) Torque link arm
(3) Rear fork pivot shaft
(4) Rear fork
9. Adjust the front brake caliper.

Adjust the clearance between brake disc and pad B to 0.15 mm (0.006 in .) with the caliper adjusting screw.

5. REAR SUSPENSION

The rear suspension is equipped with dual action telescoping shock absorbers.
Rear fork is a swing arm type of tubular construction which provides greater rigidity.
A. Disassembly

1. Remove the mufflers.
2. Remove the rear wheel.
3. Remove the rear suspension mounting nut and bolt, and then remove the suspension from the frame and rear fork.
4. Compress the rear suspension spring using a special suspension compressor tool (Tool No. 07959-3290000) and disassemble.

Fig. 256 (1) Rear suspension
(2) Nut
(3) Bolt

Fig. 257 (1) Rear suspension assembly
(2) Suspension compressor tool
(3) Spring seat stopper
(4) Rear suspension upper cover
(5) Spring seat
(6) Rear suspension spring
(7) Joint rubber (11) Spring seat
(8) Joint
(9) Nut
(10) Rubber
(12) Spring adjuster
(13) Rear damper
5. Remove the rear fork pivot nut and shaft, and separate the fork from the frame.

B. Inspection

1. Check the rear suspension spring.
2. Check damper for oil leaks.
3. Inspect the damper upper case and rod for dent and bend. Make sure the oil damper operates smoothly in both directions.
4. Inspect the damper case and stopper for damage and dent.
5. Check the clearance between the rear fork pivot bushing and shaft.
6. Check the pivot shaft for bending.
7. Check the rear fork swing arm for bend -ing, twisting, and cracks.

C. Reassembly

1. Mount the rear brake arm stopper to the rear fork.
2. Apply grease on the fork pivot bushing and install the rear fork on the frame with the pivot shaft.
3. Mount the rear suspension between the frame and fork on both sides and tighten the cap nuts and bolts.
4. Mount the rear wheel.

Note:
When the reassembly is completed, adjust the rear brake and the drive chain tension.

Fig. 258 (1) Rear fork
(2) Rear fork pivot shaft

Fig. 259 Rear shock absorber spring characteristic

Fig. 260 (1) Micrometer
(2) Rear fork pivot shaft

Fig. 261 (1) Inside dial gauge
(2) Rear fork bushing

Fig. 262 (1) Fuel tank

Fig. 263 (1) Seat mounting bolt
(2) Cotter pin
(3) Air cleaner

Fig. 264
(1) 6 mm bolt
(2) 6 mm bolt

Fig. 265 (1) Mounting bolt
(2) Cotter pin

6. FRAME BODY

A. Construction

The double cradle frame is constructed of steel tubes and plates. The head pipe section is of drawn tubing construction which provides high rigidity and strength for good handling at high riding speed.

B. Disassembly

1. Position the fuel cock lever to 'STOP', disconnect the fuel tube from the fuel cock, and dismount the fuel tank from the frame.
2. Remove the mufflers, and dismount the engine.
3. Remove the front wheel, and the front fork.
4. Remove the handle bar and the steering stem from the frame.
5. Remove the rear wheel, rear fork, and rear fender.
6. Remove the seat, the tool tray, and the air cleaner element.
7. Detach the electrical equipment.
8. To remove the main stand, unscrew the two mounting bolts, remove the cotter pin, and extract the main stand pivot pipe.
9. Remove the top and bottom ball races from the steering head pipe.

Note:

Use a Ball race remover (Tool No. 079533330000) to prevent damage when driving out the ball races.

C. Inspection

1. Check the frame main unit for twisting, deformation, and cracks around the welded areas, and the pipes for bending and cracks.
2. Inspect the top and bottom races for scoring and wear.
3. Check the head pipe for misalignment.
4. Check seat cover for tears.
5. Check fuel tank for leaks, fuel tubes for aging or damage, and fuel cock gasket and strainer cup O-ring for damage. Flush the tank interior with clean gosoline.
6. Remove dust from the air cleaner element by blowing compressed air from the inside. Check element for damage.
7. Replace exhaust pipe gasket if damaged.

D. Reassembly

1. Install the main stand on the frame.
2. Install the rear fender and the electrical equipments on the frame.
3. Install the rear fork, rear cushion and rear wheel.
4. Install the steering stem, front fork and front wheel.
5. Mount the air cleaner case, the battery, the seat, and the fuel tank.

Fig. 265 (1) Ball race remover
(2) Ball race
(3) Head pipe

Fig. 267 (1) Fuel strainer cup
(2) O-ring
(3) Fuel strainer screen
(4) 6 mm cross screws
(5) Fuel cock body
(6) Fuel cock gasket
(7) Fuel cock lever
(8) Cock lever spring
(9) Setting plate
(10) 6 mm screw

Fig. 268 (1) Air cleaner element

6. ELECTRICAL

1. GENERAL DESCRIPTION

Fig. 269 Complete electrical system diagram
(1) Tachometer pilot lamp
(2) Speedometer pilot lamp
(3) Head light
(4) Position lamp (except USA type)
(5) Front brake stop switch
(6) Front winker lamp
(7) Emergency switch
(8) Head light switch
(9) Starter switch
(10) High beam pilot lamp
(11) Neutral lamp
(12) Oil warning lamp
(13) Winker pilot lamp
(14) Speed warning lamp (except USA type)
(15) Winker switch
(16) Horn button
(17) Ignition coil
(18) Speed warning system (except USA type)
(19) Contact breaker assembly
(20) Battery
(21) Horn
(22) Main switch
(23) Spark plug
(24) AC generator.
(25) Oil pressure switch
(26) Starting motor
(27) Neutral switch
(28) Rear brake stop switch
(29) Fuse holder
(30) Silicon rectifier
(31) Winker relay
(32) Magnetic switch
(33) Voltage regulator
(34) Tail/stop lamp
(35) Rear winker lamp

2. IGNITION SYSTEM

Fig. 270
(1) Spark plugs
(3) Condensers
(5) Battery
(2) Ignition coils
(4) Contact breaker

The ignition system consists of two ignition coils, two contact breakers, four spark plugs, an ignition switch and a battery.
The current from the battery flows through the primary winding of the ignition coil, and circuit is completed by grounding through the contact breaker. Contact breaker is contained in the contact breaker housing at the right end of the crankshaft. There are two contact breakers which are 180° out of phase. One of the breakers furnishes high voltage current to spark plugs 1 and 4 ; the other breaker furnishes current to plugs 2 and 3 . The contact breakers ignite the spark plugs in a firing sequence of $1,2,4$ and 3 which is indicated on the high tension plug cords. Since no distributor is used, the construction is simple and the system is easy to service.

SERVICE DATA

Ignition coil 3 point spark gap opening	$7 \mathrm{~mm} \mathrm{~min} .(0.27 \mathrm{in}$.
Spark plug Type (standard) Plug gap	NGK D-7 ES, $0.6 \sim 0.7 \mathrm{~mm}(0.023 \sim 0.027 \mathrm{in}$.
Contact breaker Point gap Spring force	$\begin{aligned} & 0.3 \sim 0.4 \mathrm{~mm}(0.012 \sim 0.016 \mathrm{in} .) \\ & 680 \sim 850 \mathrm{~g}(1.43 \sim 1.87 \mathrm{lbs} .) \end{aligned}$
Condenser Capacity Insulation resistance	$\begin{gathered} 0.24 \mu \mathrm{~F} \pm 10 \% \\ \text { Over } 10 \mathrm{M} \Omega(1,000 \text { megger }) \end{gathered}$
Spark advancer Start of advance (crankshaft speed) Full advance (crankshaft speed) Advance angle	$\begin{gathered} 1,150 \mathrm{rpm} \\ 2,300 \underset{\sim}{\sim}, 500 \mathrm{rpm} \\ 25^{\circ} \end{gathered}$

Ignition Coil

The ignition coil consists of a primary coil with 420 turns of copper wire wound around an iron core of laminated silicon steel sheets. A secondary coil with 13,000 turns of wire is wound on top of the primary coil. Each secondary coil has two high tension cords to two spark plugs.

A. Disassembly

1. Open the seat and remove the fuel tank.
2. Disconnect the ignition coil leads. (yellow, blue and black/white)
3. Unscrew the two ignition coil mounting bolts, and separate the ignition coil from the frame.

B. Inspection

1. Ignition coil continuity test

Primary coils:
Check for continuity between the terminals of the primary coil.
Right coil: yellow and black/white leads Left coil: blue and black/white leads Secondary coils
Check for continuity between the terminals of the high tension cords.
If there is no continuity, the coil is open and must be replaced.

Fig. 271 (1) Primary coil
(2) Iron core
(3) Bobbin
(4) Secondary coil
(5) Primary terminal
(6) High tension cord
(7) High tension terminal

Fig. 272 (1) Ignition coil
(2) Bolts

Fig. 273 Ignition coil continuity test

Fig. 274 Ignition coil performance test

Fig. 275 Spark performance

Ignition coil perfomance test

Coil may test satisfactorily for continuity but it may not perform satisfactorily due to deterioration from long use, therefore, performance should be checked to determine its condition.
Connect the service tester power cord to a 12 V battery and ground the ground cable. Connect the ignition primary test lead to the tester and connect the opposite terminal ends to the primary terminals of the coil. Connect red test lead to the black terminal of the ignition coil and the white test lead to the yellow cord of the left coil (to the blue cord for the right coil).
Position the selector knob to COIL TEST. Adjust the three point spark tester to the maximum distance spark is maintained and then measure this distance. The coil is satisfactory if the distance is greater than $\mathbf{7 m m}$. (0.27in.)

Note:
Since a dual sparking ignition coil is used, note the spark condition. If the spark appears as B in Fig. 274, the connection to the primary coil is reversed.

Spark plug

A. Removal

1. Remove any dirt from around the spark plug by using compressed air.
2. Remove the spark plugs with a plug wrench.

B. Inspection

Inspect the spark plug for worn electrodes, excessive gap, fouled condition and damaged porcelain insulator.

1. Clean dirty spark plug with a plug cleaner or wire brush.
2. Measure the electrode gap with a feeler gauge and, if necessary, adjust to the specified gap.
Standard gap: $0.6 \sim 0.7 \mathrm{~mm} \quad(0.023 \sim$ 0.027 in .)
3. Replace the spark plug if the porcelain insulator is damaged, or the gasket if it is damaged or distorted.
Standard spark plug: D-7ES (NGK), X22ES (DENSO)

C. Reinstallation

1. Install the spark plugs in the reverse order of removal.
Torque: $\mathbf{1 . 5} \sim \mathbf{2 . 0} \mathrm{kg}-\mathrm{m}(11 \sim 14 \mathrm{ft}-\mathrm{lbs})$

Note:

1. Exercise care not to drop the plug gasket.
2. Loose plug will not properly dissipate the heat and may result in engine malfunction.

Fig. 276 (1) Spark plug (2) Spark plug cleaner

Fig. 277 (1) Feeler gauge

Fig. 278
(1) 6 mm bolt
(2) Special washer
(3) Screws
(4) Condensers
(5) Contact breaker plate

Fig. 279 (1) Condenser

Fig. 280
(1) Spark advancer

Fig. 281 (1) Spark advancer
(2) Crankshaft

Contact Breaker and Condenser

A. Disassembly

1. Remove the point cover.
2. Disconnect the leads (yellow, blue) at the connectors located at the center of the frame.
3. Unscrew the 6 mm bolt, remove the special washer, loosen the base plate mounting screws, and then remove the contact breaker assembly.

B. Inspection

- For adjustment of the breaker point and ignition timing, refer to the section "Maintenance Operations".
- Condenser

Measure the capacitance of the condenser using the service tester.
Standard value : $0.22 \sim 0.26 \mu \mathbf{F}$

Note:

The points should be open when testing.

Spark Advancer

A. Disassembly

1. Remove the point cover and contact breaker assembly.
2. Remove the spark advancer from the spark advancer shaft.
B. Inspection
3. Clean dust and foreign matters from friction surfaces, and assure that operation is smooth.
4. Check spring tension, and advancer pin wear.
Standard spring tension:
$680 \sim 850 \mathrm{gr} .(1.43 \sim 1.87 \mathrm{lbs})$
C. Reassembly
5. Install the dowel pin by aligning the hole.
6. Reassemble in the reverse order of removal.

3. CHARGING SYSTEM

The charging system for the CB500 is made up of the exciter field 3-phase AC generator, rectifier, voltage regulator and the fuse. The generator consists of the field coil, stator coil and the rotor; it does not contain slip rings or brushes.
In order for the stator coil to produce a constant voltage, the current from the battery to produce the exciter field is regulated to very close limits by the dual contact regulator. The output from the generator is rectified by the silicon rectifier before being sent to recharge the battery.
The generator performs two functions depending upon the charge condition of the battery. The electrical current from the battery flows through the switch and into the regulator. When the battery voltage is lower than normal (less than 13.5 V at the battery terminal), the current flows through the upper contact and to the field coil. The strength of the magnetic field is dependent upon the strength of the battery voltage. When the battery terminal voltage is 12 V , the field coil current is 1.6 A . This produces an output voltage of corresponding strength which is used to charge the battery.
When the battery voltage exceeds approximately 14.5 V , the armature coil pulls the armature away from the upper contacts and closes the lower contacts to insert a 10Ω resistance into the field coil circuit. The current to the field coil is thus reduced to 0.7 A and, consequently, a lower voltage is produced by the generator, limiting the amount of charge to the battery. This function of inserting or removing the resistance into the generator field coil is performed by the voltage regulator in accordance with the charge condition of the battery.

Fig. 282
(1) Silicon rectifier
(5) Regulator
(9) Relay coil
(2) Coupler
(6) Upper contact
(3) Battery $12 \mathrm{~V}, 12 \mathrm{AH}$
(7) Moving contact
(10) Stator coil
(4) Main switch
(8) Lower contact
(11) Field coil
(12) To load

Fig. 283 (1) Red/white lead
(3) Voltmeter
(2) Ammeter
(4) Battery

Charging Test

1. Perform the test using ammeter and voltmeter.
2. The battery charge condition is determined by measuring the specific gravity of the battery electrolyte. If the specific gravity is lower than 1.26 (at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$), recharge the battery so that the specific gravity is up to $1.26 \sim 1.28$ (at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$), and then perform the following test.
3. Disconnect the battery cable from the \oplus terminal of the battery, and connect it to the \oplus side of the ammeter.

Next, connect the Θ side of the ammeter to the \oplus terminal of the battery.
Connect the \oplus side of the voltmeter to the \oplus end of the battery cable, and ground the Θ side of the voltmeter. (Fig. 282)
4. Start the engine, operate the engine under both the NIGHT RIDING and DAY RIDING conditions and check to see if the measured values conform to those specified in the table below.
If the values are less than those specified, adjust the regulator.
Note:
The charge condition of the battery may cause the charge current to vary slightly.

Fig. 284
(1) A.C. Generator
(2) Silicon rectifier
(3) Voltage regulator
(4) Volt meter
(5) Ammeter
(6) Main switch
(7) Battery
(8) Headlight switch
(9) Headlight low beam
(10) Headlight high beam

Engine RPM	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000
Charging current (A)	6.5	0	2.4	1.3	1.0	1.0	0.8	0.6
Day riding	$2-3$	1	1	1	1	1	1	1
Night riding	12	12.4	13.2	14.5	14.5	14.5	14.5	14.5
Battery terminal voltage (v)								

A.C. Generator

Specifications

Type and maker	LD 110-01, Hitachi
Output	150 W
Battery voltage	12 V
Polarity	\ominus ground
Charging speed	$1000-9000 \mathrm{rpm}$
Weight	$3 \mathrm{~kg}(6.6 \mathrm{lbs})$

A. Disassembly

1. Remove the generator cover and pull out the rotor using the rotor puller (special tool No. 07011-21601).
2. Unscrew the three 6 mm screws from inside the generator cover and remove the stator coil.
3. Unscrew the three 6 mm screws from the outside the generator cover and remove the field coil.

B. Inspection

1. Field coil resistance test

Check resistance between the two field coil leads (White, Green) using the Service Tester OHMS function.
STANDARD RESISTANCE VALUE: $4.9 \Omega \pm 10 \%$
NOTE: Test may be performed without removing field coil.
2. Stator coil resistance test
a. Check resistance between any two of the three yellow alternator (stator) leads.
b. Leave either tester lead connected to yellow wire. Attach other tester lead to third yellow stator wire.
STANDARD RESISTANCE VALUE:

$$
\begin{aligned}
& 0.35 \Omega \pm 10 \% \text { at a. } \\
& 0.35 \Omega \pm 10 \% \text { at } \text { b. }
\end{aligned}
$$

NOTE: Test may be performed without removing stator.

TEST	RESULT	INDICATION
1 (field coil)	No reading or low reading	Defective
2 (stator) a or b	No reading or low reading	Defective

Fig. 285 (1) Rotor puller
(2) Rotor

Fig. 286 (1) Side cover
(3) Field coil
(4) Stator coil

Fig. 287 Field coil

Fig. 288 Stator coil

Fig. 289
(1) Point gap
(2) Upper contact
(3) Armature
(4) Core gap
(5) Yoke gap
(6) Spring
(7) Yoke
(8) Adjusting spring

Fig. 290 (1) Regulator

Fig. 291 (1) Voltage adjusting screw (2) Lock nut

Regulator

The regulator is a dual contact type. If maintains a constant voltage by placing the resistance circuit into the field coil circuit when the generating voltage rises to a certain value, and cutting out the resistance circuit when the voltage drops below a set limit.

A. Disassembly

1. Disconnect the leads at the connectors and unscrew the two 6 mm regulator mounting bolts.
2. Unscrew the two screws and remove the regulator cover.

B. Inspection and Adjustment

Regulating voltage adjustment

1. To adjust for low charge current or low battery voltage, loosen the lock nut on the voltage adjusting screw and turn the adjusting screw clockwise. When the regulator is set too high, turn the adjusting screw counterclockwise.
2. Upon completing the adjustment, recheck regulator performance after installation.
Core gap adjustment
Measure the core gap with a feeler gauge. If it requires adjustment, loosen the core gap adjusting screw and move the point body up or down.
Standard core gap value:

$$
0.6 \sim 1.0 \mathrm{~mm}(0.02 \sim 0.40 \mathrm{in} .)
$$

Point gap adjustment
Measure the point gap with a feeler gauge. If it requires adjustment, loosen the point gap adjusting screw and move the lower point up or down. Standard point gap value:

$$
0.2 \mathrm{~mm}(0.008 \mathrm{in} .)
$$

Note: If the points are pitted or fouled, polish with a $\# 500 \sim 600$ emery paper.

Fig. 292 (A) Core gap
(B) Point gap
(1) Core gap adjusting screw
(2) Point gap adjusting screw
(3) Lower point

Silicon Rectifier

Inspection

The condition of the silicon rectifier is tested by disconnecting the electrical connections and testing the rectifying function in both the normal and reverse directions. Continuity in the normal direction only indicates good condition. Continuity in both direction indicates a defective rectifier.

Note:

1. Do not use a megger for the test as the high voltage will damage the silicon diodes.
2. Observe the polarity of the battery. Connecting the battery terminals in reverse will shorten the life of the battery as well as causing a large current to flow through the electrical system, causing damage to the silicon rectifier, and also destroying the wire harness.
3. Do not operate the generator at a high RPM with the "P" terminal (red/white cord from the magnetic switch) of the silicon rectifier disconnected. The high voltage generated may damage the silicon rectifier.
4. When charging the battery mounted on the motorcycle from an external source with high charge rate such as a "quick charge", the wiring to the silicon rectifier should be disconnected at the coupler to prevent damage.

Fig. 293 Silicon rectifier inspection

Fig. 294 (1), (2), (3) Yellow
(4) Yellow/White
(5) Green

4. STARTING SYSTEM

The starter is a device which converts the electrical energy of the battery to the mechnical energy to crank the engine for starting. The starting circuit consists of a push button switch mounted on the right side of the handle bar which, when the starter button is pressed, energizes the starter magnetic switch and closes the contacts of the starter circuit. This permits approximately 120 A of current to flow from the battery to the starting motor, which then rotates the engine to perform the starting,

Fig. 295 Starting Circuit
(1) Brush
(5) Field coil
(9) Starter button
(2) Armature
(6) Starter magnetic switch
(10) Battery
(3) Starting motor
(7) Electromagnet
(4) Pole
(8) Ignition switch
(11) Plunger

Fig. 296 Starting motor installation
(1) Starting motor
(2) Starter reduction gear

Starting Motor

The starting motor is mounted on the crankcase behind the cylinder and drives the crankshaft through the starting clutch. Specifications

Rated voltage
12 V
Rated output
Rated operation
0.6 KW

Continuous for 30 seconds

	Without load	With load
Voltage	8.5 V	11 V
Amperage	35 A	120 A
Torque	-	$0.12 \mathrm{~kg}-\mathrm{cm}$ $(0.86 \mathrm{ft}-\mathrm{lbs})$ 3200 rpm
Revolution	$11000 \widetilde{\sim}$	

A. Disassembly

1. Disconnect the starting motor cable at the magnetic switch.
2. Remove the starting motor cover, left crankcase cover and unscrew the two 6 mm starting motor mounting bolts.
3. Starting motor can now be pulled out.
4. Unscrew the two 6 mm screws and remove the starting motor side cover.

Fig. 297 Starting motor disassembly drawing

Fig. 298 (1) Magnetic switch
(2) Starting motor cable

Fig. 299 (1) Starting motor
(2) 6 mm bolts

Fig. 300
(1) Carbon brushes
(2) Springs
(3) Commutator

Fig. 301 Stator coil inspection

Fig. 302 Armature coil inspection

B. Inspection

1. Carbon brush inspection

Worn carbon brush, pitted or rough contact surface and weakened brush spring will cause starting difficulty, therefore, they should be replaced.
2. Commutator cleaning

Dirty commutator will give poor starting motor performance.
Surface of the commutator should be polished with a fine grade emery paper and completely washed before reassembly.
3. Stator coil inspection

Check continuity between the brush wired to the stator coil and the starting motor cable. Lack of continuity indicates an open stator coil and should be replaced.
4. Armature coil inspection

A grounded armature coil will_render the starting motor inoperative.
Perform a continuity test between the commutator and the core. A continuity condition indicates a grounded stator coil and should be replaced.

Starter Magnetic Switch

The starting motor requires a large current of approximately 100 A to operate. To minimize resistance, a large cable is used for wiring, also, a switch with heavy duty contacts is required. Sparking across the contacts will result, as well as resistance depending upon the contact pressure, when the contacts are opened suddenly to shut off the flow of large current. To cope with these conditions, a magnetic switch is used separately which is operated electrically by a small current through a push button starter switch.

Inspection

1. Primary coil continuity test.

If there is no continuity, the primary coil is open.

- If a clicking noise is heard when a 12 V battery is connected to the two leads of the coil, the primary coil is satisfactory.

2. After long use, the magnetic switch contacts will become pitted or burnt from the large current which flows across it, and gradually build up resistance which may prevent the current from flowing. Connect 12 V to the primary coil leads of the magnetic switch. If there is no continuity across the switch contacts, the switch is defective.

Fig. 303

(1) Stopper	(10) Contact bolt
(2) Stopper holder	(11) Case
(3) Washer (12) Contact plate (4) Roller A (13) Yoke (6) Flat washer (14) Coil bobbin (7) Plunger holder (15) Coil complete (8) Plunger shaft (17) Return spring (9) Plunger	

Fig. 304 Primary coil continuity test

Fig. 306
(1) Specific gravity
(2) Relation between specific gravity
(3) Residual charge (\%)

Fig. 307
(1) Sediment
(3) Plates
(2) Battery case

Fig. 308 Charger hook-up

Battery

A. Specification

Type	$12 \mathrm{~N} 12 \mathrm{~A}-4 \mathrm{~A} \cdot 1$
Voltage	12 V
Capacity	12 AH

B. Specific gravity measurement

Battery electrolyte is measured with a bulb type hydrometer. When the specific gravity is below 1.200 (at $20^{\circ} \mathrm{C}$), the battery should be recharged.
When making a reading, the hydrometer should be held vertical with the electrolyte liquid level, held at the eye level and the value on the floating scale read at point where the liquid separates from the stem of the float.
C. Inspection and replenishment

1. Electrolyte in each cell of the battery should be inspected every half month to a month, and distilled water added to bring the level to the upper mark whenever the electrolyte level is below the level mark.
2. Whenever there is rapid lowering of the electrolyte level, the charging system should be inspected.
3. Periodically measure the specific gravity. After adding distilled water, allow the battery to be charged and the electrolyte sufficiently agitated before making the measurement.
4. Primary battery troubles are due to corrosion around the connetors and terminals causing poor contact, separation of the battery paste, and sulfation (battery which is left in a discharged condition for a long period will have lead sulfate formed on the plates and recharging will not restore it to its original condition), therefore, the inspection should be performed periodically and thoroughly.

Note:

When sediment are formed at the bottom as shown in the figure, the battery should be replaced.

D. Battery charging

 (Caution)1. Refrain from charging the battery at a fast rate (quick charge) as it shortens battery life. When rapid charging is necessary, limit the charging rate to maximum of 2.0 A .
2. Hydrogen gas is generated during the charging process, therefore, keep fire away.
3. After battery charging is completed, wash the battery with water to remove spilled electrolyte, and aprly grease to the terminals.

5. ELECTRICAL EQUIPMENTS

1. Main switch inspection

With the switch in both ON and OFF positions check to see that the continuity conditions in the chart below are satisfied. The switch is defective if there is no continuity where specified, or if there is continuity where not specified.

		BAT	IG	TL	TL2
Color of cords	Red	Black	Brown/ white	Brown	
Key position	1	OFF			

2. Front stop switch inspection

Apply tester lead probes to the terminals of the front stop switch cords (black, green/yellow), operate brake lever and check for continuity.

- Take into consideration the lever play $2 \sim 5 \mathrm{~mm}$ ($0.08 \sim 0.2 \mathrm{in}$.).
The stop light should come on when the brake lever travels beyond the play in the lever.

3. Rear stop switch inspection

After making sure that the stop switch spring is disconnected, apply tester lead probes to the switch terminals (green/ yellow, black cords) and check for continuity. When the brake pedal is depressed 20 mm (0.8 in .) at the front end of the pedal, the stop light should come on at this point.
Adjustment.
If the stop light is late in coming on, turn the adjuster nut clockwise, and if too early, turn counterclockwise.
4. Horn Inspection

- Check for continuity across the horn lead terminals.
- Alternate method is to connect the horn to a fully charged 12 V battery and check its operation.

Fig. 309
(1) Black
(3) Brown
(4) Red

Fig. 310 Front stop switch inspection
(1) Front stop switch

Fig. 311 (1) Rear stop switch adjuster nut

Fig. 312 Horn continuity test

Fig. 313 (1) Horn button
(2) Light green cord

Fig. 314 (1) Winker switch
(2) Light blue cord
(3) Gray cord
(4) Orange cord

Fig. 315 (1) Lighting switch
(2) Black cord
(3) Blue cord
(4) Brown/white cord
(5) White cord
5. Horn button inspection

With the tester lead probes contact the light green cord terminal within the head light case and the the handle bar, and then press the horn button to check for continuity. If continuity exists, the horn button is satisfactory.
6. Winker switch inspection.

Disconnect the winker switch wiring within the head light case. Check continuity between the gray cord terminal and orange cord terminal (left winker), and between the gray cord terminal and light blue cord terminal (right winker) respectively of the winker switch. Continuity for the respective tests should exist according to the switch connections shown in the table below.

Knob	Blue cord	Gray cord	Orange cord
R	$\bigcirc-$	-	
OFF (center)			
L			$-\bigcirc$

7. Lighting switch inspection.

Inspect for broken wire and defective contact between the respective switch cords, using a tester. Continuity between the different cords should exist in accordance with the switching position table shown below. If continuity exists where not indicated the switch is defective.

| Cord color | | | $\begin{array}{c}\text { IG } \\ \text { Black }\end{array}$ | $\begin{array}{c}\text { HB } \\ \text { Blue }\end{array}$ | $\begin{array}{c}\text { Brown/ } \\ \text { white }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Wh

White\end{array}\right]\)
8. Emergency switch and starter switch inspection
Inspect for broken wire and defective contact between the respective switch cords. Continuity between the different cords should exist in accordance with the switching position table shown below. If continuity exist where not indicated, the switch is defective.

Emergency switch		
Cord color	Black	Black/white
ON	O	O
OFF		

Starter switch		
Cord color		Yellow/red
ON	O	
OFF		

9. Oil pressure switch inspection

Lubricating oil is supplied under pressure of $4 \sim 6 \mathrm{~kg} / \mathrm{cm}^{2}\left(56.8 \sim 85.3 \mathrm{lbs} / \mathrm{in} .{ }^{2}\right)$ by the oil pump to various parts of engine. When the oil pressure drops, the oil supply becomes insufficient. The oil system is designed so that when the oil pressure drops below $0.5 \mathrm{~kg} / \mathrm{cm}^{2}$ ($7 \mathrm{lbs} /$ in. ${ }^{2}$), the oil pressure switch operates and the warning lamp comes on.
Check the oil pressure switch for continuity without starting the engine and with the main switch on. If there is continuity, the switch is satisfactory. It is normal for the warning lamp to go out when the engine is started.
If the warning lamp does not go out after starting, and the pressure switch is satisfactory, the oil system should be inspected for trouble.

Fig. 316 (1) Emergency switch (3) Black/white (2) Black

Fig. 317 (1) Starter switch
(2) Yellow/red

Fig. 318 (1) Oil pressure switch

Fig. 319 Neutral switch inspection
(1) Neutral switch
10. Neutral switch inspection

The neutral switch is mounted on the left side of the upper crankcase. When the transmission is in neutral, the switch becomes grounded and the neutral pilot lamp comes on. Position the transmission in neutral, remove the left crankcase cover and check the continuity of the neutral switch. The switch is satisfactory if there is continuity.

7. INSPECTION AND ADJUSTMENT OF CB 550

Fig. 320 (1) Clutch adjuster lock nut
(2) Clutch adjuster

Fig. 321 (3) Alignment marks

Fig. 322 (4) Clutch cable adjuster bolt
(5) Lock nut

1. Clutch

The clutch must be adjusted so that the engine can be completely disconnected from the transmission when the clutch lever is squeezed, but not to the point where the clutch will slip when the motorcycle is accelerating.
The clutch cable should be adjusted to provide $10 \sim 20 \mathrm{~mm}(0.4 \sim 0.8 \mathrm{in}$.) free play as measured at the tip of the clutch lever.
To adjust, proceed as follows:

1. Loosen the clutch adjuster lock nut (1) and turn the adjuster (2) to align the marks (3) on the actuating arm and engine side cover.
2. Clutch cable adjustment can be made by means of the adjusters at the upper and lower ends of the clutch cable. Loosen the lock nut (5) (6) at the lower end) at the clutch lever and turn the cable adjuster bolt (4) (nut (7) at the lower end) in either direction. Turning the cable adjuster bolt or nut at the lower end in the direction (A) will increase the free play and turning it in the direction (B) will decrease the free play. Tighten the lock nut.
3. After adjusting, check to see if the clutch is not slipping or if the clutch is properly disengaging.
Start the engine and shift into gear. There should be no excessive grinding from the transmission, and the motorcycle should not begin to creep forward while the clutch lever is squeezed. Drive the motorcycle to check for clutch slippage.

Fig. 323 (6) Lock nut
(7) Clutch cable adjuster nut

8. NEW FEATURES OF CB550

Fig. 323
(1) Cylinder head
(7) Seal plate
(2) Breather tube
(8) Punching metal
(3) Carburetor
(9) Element B
(4) Air cleaner chamber
(5) Element seal case
(10) Element cover
(6) Drain tube
(11) Air cleaner element spring

1. BLOW-BY GAS SCAVENGING DEVICE

The blow-by gas scavenging device was newly employed for contributing to minimize pollution. The description is given here, referring to Fig. 5 above.
The blow-by gas within the cylinder head is conducted into the element seal case through the breather tube. The gas is then conducted into the element B through the openings on both sides in the seal plate and punching metal, where oil is separated from the gas at each section. Further the gas enters the air cleaner element on the upper part of the seal case through the pipe within the element cover and is filtered again. The gas so filtered is drawn into the carburetor chamber and returns to the combustion chamber for burning through the carburetor. Now the gas is again burnt in the combustion chamber to minimize pollution by the exhaust gases.

Fig. 324

Fig. 325

- Blow-by gas

The exhaust gases from automobiles contain carbon monoxide, hydrocarbon, hydrogen sulfide, nitrogen dioxide, selenium oxide, etc. which are poisonous ingredients contributing to pollution.
The exhaust gases consist of not only the remainder of burned mixture and combustion products but also a leakage of compression past the cylinder wall or from the crankcase. The latter is known as "blow-by gas", and accounts for 20 to 40% of the total amount of hydrocarbon to be emitted in the air. Since blow-by gases have not been completely burned and, therefore, must be burned again by means of the blow-by gas scavenging device to minimize the amount of the gas to be emitted into the air.

2. STARTING MOTOR SAFETY UNIT

- Description

The starting motor safety unit operates in the way that the starting motor functions only when the transmition is in neutral or while the clutch lever is being squeezed in any gear position, assuring rider safety and preventing damage of the motor and transmission gears.

- Circuits and operations

Fig. 326 Circuit of models without safety unit
(1) Starting motor
(4) Main switch
(2) Starter button switch
(5) Fuse
(3) Starter magnetic switch
(6) Battery

When the engine switch is turned on, some amount of electricity is usually applied to the starter magnetic switch coil. If the starter button switch is then turned on, the starter magnetic switch will operate to cause the starting motor to turn. In other words, the motorcycle begines to move when the main switch and starter button switch are turned on with the transmission in gear.

Fig. 327 Circuit of model (CB 550) with safety unit
(1) Starting motor
(6) Battery
(2) Starter button Switch
(7) Clutch lever switch
(3) Starter magnetic switch
(8) Neutral switch
(4) Main switch
(9) Safety unit
(5) Fuse

The ground side of the starter button switch is connected to the body through the clutch lever switch and neutral switch. When the clutch lever switch or the neutral switch is turned on the starter magnetic switch will operate to cause the starting motor to turn.
(1) Clutch lever switch

The clutch lever switch is designed to be turned on when the clutch lever is squeezed to cause the clutch to be disengaged only. (This switch has the same construction and function as those of the front stop switch.)

3. FRONT SUSPENSION

The front fork used on CB550 is of a free valve type which is widely employed in a telescopic type shock absorber.
As its damping force can be adjusted by changing its stroke to meet a driver's preference or conditions of a road or surfaces, it always provides a comfortable ride even under severe driving conditions. On the other hand, CB500 is incorporated with a rod type shock absorber which is also used in a Telescopic type.

Operation

- When the wheel meets holes or bumps in the road, it moves up and down. This up-and-down movement of the wheel is transmitted to the bottom leg.
Since the bottom leg is integrated with a pipe, the pipe also moves up and down. With either action, two springs on the pipe flux and rebound, absorbing the road shocks to the motorcycle.
In this case, oil in the chamber (B) pushes up the free valve and flows into the space (A) freely.

At the same time, oil in the chamber (B) also flows through orifices in the lower end of the spring under seat into the space (C) by the amount by which the pipe is moved up

- Extension

As the wheel has passed the bump or hole, it moves down. To eliminate excessive up-and-down motion of the spring and wheel, there will be a restraint on the spring and wheel action.
In operation, as the wheel moves down, the free valve is closed, introducing high pressure in the space (A). This high pressure then forces the oil out and into the space (C) through the orifices in the spring under seat.
Since the oil encounters a restraint as it passes through the orifices, excessive wheel and spring movement as well as spring oscillation are prevented.

Fig. 328
(1) Compression

4. BRAKE LINING WEAR INDICATOR

Discription

The brake lining wear indicator is provided to check the wear condition of the brake linings visually from outside. As shown in the figure below, the indicator plate is attached to the brake cam. As the brake lining has worn, the brake cam moves excessively. Such a movement of the cam is checked by the arrow on the periphery of the indicator. Further the brake panel cam boss is provided with the "wear limit" mark to make it possible to check the service limit (replacement time) of the lining easily with the brake panel installed.

Descriptive illustration

9. COMPARISON OF CB550 TO CB500

(Engine)
Part or item

Clutch operation

Model CB500	Model CB550
Refer to Fig. 13 on page 12. The clutch connects and disconnects the engine from the transmission. As shown in Fig. 13, the clutch plates (4) ("drive plates"), which are capable of sliding axially on the clutch center (5), are "sandwiched" between the friction discs (3) ("driven discs") engaged in the clutch outer (2). In normal engaged condition of the clutch, the pressure plate (7), upon which the force of the clutch springs (6) is acting, presses the stacks of the discs and plates against the clutch outer. Under this condition, the engine power is transmitted through the primary drive gear (1), clutch outer, friction discs, plates and clutch center to the transmission main shaft. As the clutch lever is squeezed to disengage the clutch, the clutch lifter (11) connected to the clutch cable is rotated and then is forced out the (11) connected to the cable through the thread type cam mechanism of the lifter cam and the clutch adjuster_cam. This force of the clutch ball is transmitted through the \#10 steel ball (10), clutch lifter rod (9) and clutch lifter joints piece (8) to the clutch pressure plate to cause the clutch springs to be compressed, producing clearance between the friction discs and plates. Now the face pressure on the friction surfaces of the power transmitting parts is reduced to zero, resulting in disengagement of the clutch.	Refer to Fig. 14 on page 12. As shown in the figure, the clutch plates (9), which are capable of sliding axially on the clutch center (6), are sandwiched between the friction discs (8) engaged in the clutch outer (7). In normal engaged condition of the clutch, the pressure plate (10, upon which the force of the clutch springs (5) is acting, presses the stacks of the discs and plates against the clutch outer. Under this condition, the engine power is transmitted through the primary drive gear, clutch outer, friction discs, plates and clutch center to the transmission mainshaft. As the clutch lever is squeezed to disengage the clutch, the clutch arm connected to the clutch cable operates and the clutch lifter cam (1) rotates to cause the clutch adjusting lever (2) to be forced against the clutch lifter rod (3. This force is transmitted through the clutch lifter plate (4) to the clutch center, producing clearance between the friction discs and plates. Now the face pressure on the friction surfaces of the power transmitting parts is reduced to zero, resulting in disengagement of the clutch.

Construction of CB500 clutch system

Fig. 334

Construction of CB550 clutch system

Fig. 335
Part or item

Countershaft
lubrication

Fig. 336

Fig. 338 (1) Trochoid pump
(2) Countershaft assembly

Fig. 339 (1) Oil pump
(2) Trochoid pump
(3) Transmission oil pipe
\longrightarrow Oil to countershaft
ㅁㅁㄷ Oil to cylinder head and crankshaft through oil pump

Unit: mm
Part or item
(Frame)
Part or item

10. ENGINE

1. CLUTCH

A. Disassembly

1. Drain the engine oil. (See page 20 of the CB500 Shop Manual separately issued).
2. Remove the kick starter pedal.
3. Remove the ten 6 mm screws and remove the right crankcase cover.
4. Remove the clutch lifter rod.
5. Remove the four clutch pressure plate mounting bolts.
6. Remove the clutch lifter plate.
7. Remove the 25 mm snap ring and shim and remove the clutch assembly from the mainshaft.
8. Remove the clutch outer and inner at at the same time.
(Refer to page 113 Fig. 116)

Fig. 354 (1) Clutch assembly

Fig. 352 (1) Right crankcase cover

Fig. 353 (1) Clutch lifter rod
(2) Mounting bolts
(3) Lifter plate

Fig. 355
(1) 25 mm snap ring
(2) Shim
(3) Main shaft
9. Remove the cotter pin from inside the right crankcase cover and pull out the clutch lever.
10. Remove the 6 mm nut and remove the clutch adjusting lever.

B. Inspection

See page 41 of the CB500 Shop Manual separately issued. Measurement of friction disk thickness. Using a vernier caliper, measure the thickness of each friction. Replace a disk whose thickness is below the service limit.

Unit : mm (in.)	
Assembly standard	Service limit
$2.7(0.1063)$	$2.4(0.0945)$

C. Assembly

1. Install and tighten the 6 mm nut attaching the clutch adjusting lever.
2. As shown in Fig. 38, install the clutch lever spring and 10 mm washer on the clutch lever. Insert the cotter pin and spread its ends.
3. Install the 25 mm collar in the clutch outer.
4. Install the seven friction disks and six plates alternatively to the clutch center and then install to the clutch outer. Finally install to the mainshaft.

Fig. 359 (1) Clutch center
(2) Friction disks and plates
(3) Clutch outer
(4) 25 mm collar
5. Attach a dial gauge to the end face of the clutch assembly to check for excessive looseness. It is above $0.1 \mathrm{~mm}(0.0039$ in.), install a washer or washers inside the snap ring. The washers are available in three thicknesses, namely, 0.1 mm (0.0039 in.$), 0.3 \mathrm{~mm}$ (0.0118 in .) and 0.5 mm (0.0197in.).
6. Install the four clutch springs. Install the lifter plate and tighten the four 6 mm bolts slowly in a criss-cross pattern.
7. Insert the lifter rod.

8. Install the right crankcase cover and kick starter pedal.

Fig. 361

Fig. 262 (1) Gearshift arm

Fig. 363 (1) Shift drum neutral stop bolt
(2) Shift drum stop bolt
(3) Shift drum stop
(4) Neutral stop

Fig. 364 (1) Bearing set plate on primary shaft side
(2) Bearing set plate on shift drum side

Fig. 365 (1) 6 mm bolt (3) Drum gearshift center
(2) Stop cam plate

2. GEARSHIFT MECHANISM

A. Disassembly

1. Remove the clutch. (See page 120.)
2. Remove the gear change pedal.
3. While holding down the gearshift arm as shown, pull out the gearshift spindle.
4. Remove the shift drum stop bolt and neutral stop bolt and remove the shift drum stop and neutral stop.
5. Remove the 6 mm bolt and remove the bearing set plate on the primary shaft side.
6. Remove the two 6 mm bolts and remove the bearing set plate on the gearshift drum side.
7. Remove the 6 mm bolt and remove the drum stop cam plate and drum gearshift center.
8. Separate the crankcase into the upper and lower parts and remove the transmission gears. (See page 43 of the CB500 Shop Manual separately issued.)
9. Remove the neutral stop switch from the gearshift drum.
10. Remove the guide pin clip and guide pin and pull the gearshift drum from the upper crankcase.

B. Inspection

See page 44 of the CB500 Shop Manual separately issued.

C. Assembly

1. Position the center gearshift fork on the drum as shown in Fig. 48.
2. Insert the guide pin into the center gearshift fork and secure with the guide pin clip.
NOTE:
Install the guide pin clip with it facing correctly. (See Fig. 366.)
3. Put the right and left gearshift forks in the upper crankcase and insert the gearshift fork shaft as shown in Fig. 368.

Fig. 366 (1) Neutral stop switch

Fig. 367 (1) Guide pin clip
(2) Guide pin

Fig. 368 (1) Center gearshift fork
(2) Drum

Fig. 369 (1) Right gearshift fork
(2) Left gearshift fork
(3) Gearshift fork shaft

Fig. 370

Fig. 371

Fig. 372 (1) Drum gearshift center
(2) Drum stop cam plate
(3) Lug

Fig. 373 (1) Bearing set plate on primary shaft side
4. Make sure that the gearshift forks are installed correctly and securely.
5. Instal the neutral stop switch to the gearshift drum by fitting the lug into the groove in the drum and secure with 6 mm screw.
6. Install the transmission gears in the upper crankcase and put the upper and lower crankcases together. Install the primary shaft and then tighten the crankcases securely.
7. Install the bearing set plate on the drum side and secure with the two 6 mm bolts.
8. Install the drum gearshift center. NOTE:
Properly fit the lug of the drum into the hole in the drum gearshift center.
9. Install the drum stop cam plate.

NOTE:
Properly fit the gearshift drum pin into the hole in the drum stop cam plate.
10. Instal the bearing set plate on the drum side.
11. As shown in Fig. 377, install the gearshift drum stop spring to the drum stop and to the neutral stop and tighten the drum stop bolt and neutral stop bolt and neutral stop bolt securely. Also tighten the bearing set plate on the primary shaft side together as shown.
12. Rotate the gearshift drum and check each component for smooth movement.
13. Install the gearshift arm and check to see if it moves smoothly and equally in booth directions.
14. Install the clutch. (See page 121.)

Fig. 374

11. TROUBLE SHOOTING

ENGINE

Trouble	Probable Causes	Remedies
Engine does not start	1. Excessive wear of piston ring or cylinder 2. Seized valve in valve guide 3. Seized piston 4. Faulty valve timing 5. Low or lack of compression prssure - Pressure leak 5. Blown out cylinder head gasket 6. Warped gasketing surface of the cylinder and cylinder head	Replace Replace Replace Adjust Lap the valve to obtain good valve seating or replace Replace Repair or replace
Poor engine idling	Valve Mechanism 1. Incorrect tappet clearance 2. Low or lack of compression pressure 3. Excessive valve guide clearance	Adjust to standard value Repair Replace valve and guide
Loss of power	1. Valve sticking open 2. Incorrect seating of valve 3. Weak or broken valve spring 4. Faulty valve timing 5. Blown out cylinder head gasket 6. Excessive wear of cylinder and piston 7. Worn, weak or broken piston ring 8. Loose spark plug	Replace Lap valve Replace Check valve timing and adjust if necessary Replace Replace Replace Retighten
Overheating	1. Heavy carbon deposit on combustion chamber and piston head 2. Lean fuel mixture 3. Retarded ignition timing 4. Low oil level, poor quality 5. Extended operation in low gear	Remove carbon Adjust the carburetor Adjust ignition timing Add good grade oil
Backfire	1. Incorrect seating of inlet valve 2. Faulty valve timing 3. Incorrect ignition timing 4. Excessive spark plug gap 5. Improper fuel	Check the valve seating Adjust Adjust Adjust the gap to $0.024 \sim 0.028$ in $(0.6 \sim 0.7 \mathrm{~mm})$ Replace
White exhaust smoke	1. Excessive wear of cylinder and piston 2. Overfilled engine oil 3. Excessively high oil pressure 4. Poor quality oil	Replace the piston Adjust the oil level Check the breather Replace with good quality oil
Black exhaust smoke	Rich fuel mixture	Adjust the carburetor

Trouble	Probable Causes	Remedies
Difficult gear shifting	1. Improper clutch disengagement 2. Damaged gear or foreign object lodged in the gear 3. Gear shift fork inoperative 4. Incorrect operation of the gear shift drum stopper and change pedal 5. Mainshaft and countershaft out of alignment 6. High oil viscosity	Adjust the clutch Replace the defective parts Repair or replace Repair or replace Repair or replace Change the oil
Excessive high gear noise	1. Excessive gear backlash 2. Worn main and countershaft bearing	Repair or replace Repair or replace
Gear slip out	1. Worn fingers on gear shift fork 2. Worn gear dog hole 3. Worn spline	Replace Replace Replace
Clutch slippage	1. No play in the clutch lever 2. Weak or none uniform clutch pressure plate spring 3. Worn or glazed friction disc	Adjust the clutch lever Replace the weak spring Replace
Poor clutch engagement	1. Excessive play of clutch lever 2. Warped friction disc 3. Warped pressure plate 4. Bent main shaft	Adjust clutch lever play Replace Replace Replace
Pedal does not return	1. Faulty return spring 2. Unhook return spring	Replace Hook return spring
Kick starter gear does not rotate	1. Excessive wear of kick starter pawl	Replace
Engine does not start	Carburetor 1. Choke fully open 2. Carburetor air screw improperly set 3. Air leaking into the cylinder head 4. Clogged carburetor slow jet 5. Clogged fuel valve or piping 6. Clogged vent hole in the fuel tank cap 7. No fuel in the tank	Close choke Adjust air screw Retighten carburetor connecting tube Check, clean and retighten Disassemble and clean Disassemble and clean Fill tank with gasoline
Poor engine idling	Carburetor 1. Clogged or loose carburetor slow jet 2. Improper float level 3. Incorrect air serew adjustment 4. Carburetor linkage mulfunction 5. Air leaks	Check, clean and retighten Adjust Adjust Adjust Tighten all air passage connection
Improper running of engine	Carburetor 1. Jet size too small 2. Improper float level 3. Clogged carburetor main jet 4. Carburetor linkage mulfunction 5. Air leaks	Replace with larger size jet Adjust Clean and retighten Adjust Tighten all air passage connection

CHASSIS

Trouble	Probable Causes	Remedies
Heavy steering	1. Steering stem excessively tightened 2. Damaged steering stem steel balls 3. Bent steering 4. Low front tire pressure	Loosen the steering stem nut Replace Replace Add air to the specified pressure of $1.8 \mathrm{~kg} / \mathrm{cm}^{2}$ $(25.6 \mathrm{psi})$
Front and rear wheel wobble	1. Loose steering stem mounting bolt 2. Worn front and rear wheel bearings 3. Front or rear wheel runout or distorted 4. Loose spoke 5. Defective tire	Retorque Replace bearing Repair or replace Retorque Replace
Soft suspension	1. Loss of spring tension 2. Excessive load	Replace
Hard suspension	1. Ineffective front fork damper 2. Ineffective rear damper	Repair Replace
Suspension noise	1. Front case or rear damper rubbing 2. Interference between cushion case and spring 3. Faulty fork stopper rubber 4. Insufficient front fork oil	Inspect cushion spring and case Repair or replace Replace Add damper oil
Defective brake	1. Front brake fluid - Insufficent brake fluid - Air in the brake system - Worn brake pad - Worn piston - Worn or distorted front brake disc - Brake lever out of adjustment 2. Rear brake - Worn brake lining - Worn brake shoe or poor contacts - Worn brake cam - Wet brake from water or oil - Worn brake shaft - Brake pedal out of adjustment	Add brake fluid Bleed brake 'system Replace pad Replace piston Replace disc Readjust Replace Replace Replace Clean Replace Readjust

ELECTRICAL

Troubles	Probable causes	Remedies
Engine does not start	1. Battery - Discharged - Poor contact of battery terminals 2. Main switch - Open or shorted circuit, disconnected connections - Poor contact between main switch wire and wire harness 3. Ignition coil - Improperly insulated high tension coil - Open or shorted circuit in ignition coil 4. Contact breaker - Open circuit in the primary coil - Dirty ground point with oil or dust - Point gap out of adjustment - Improperly charged condenser	Recharge or replace Repair Repair Repair Replace Replace Repair Clean Readjust Replace
Starting motor does not operate	1. Defective battery 2. Poor contact of magnetic switch 3. Poor contact of starting motor carbon brush	Charge or replace Repair or replace Repair or replace
Horn inoperative, poor sound or too weak sound	1. Horn - Cracked diaphragm 2. Horn button - Poor grounding 3. Wiring - Poor contact 4. Adjusting screw - Out of adjustment	Replace Repair Repair Readjust
Tail light and head light inoperative	1. Fuse - Blown fuse or hurnt bulb filament 2. Bulb - Burnt bulb filament 3. Switch - Poor contact of lighting switch 4. Wiring	Replace Readjust Readjust
Stop light inoperative	1. Bulb - Burnt or broken bulb filament 2. Front and tail stop light switch - Malfunction of switch 3. Wiring - Poor contact of leads	Replace Readjust Readjust
Winker lamp blinks too fast or too slow	1. Bulb - Blinks unusually fast : improperly connected relay 2. Wiring - Blinks too fast : bulb with unsitable wattage - Blinks too slow : burnt or broken bulb 3. Defective relay	Replace Replace Replace Replace

Trouble	Probable causes	Remedies
Winker lamp inoperative	1. Winker lamp switch - Poor contact of winker relay - Open circuit in winker relay coil 2. Bulb - Bulb wattage is smaller than rated wattage 3. Relay - Poor contact of winker relay - Improperly connected leads	Replace Replace Replace Replace Replace
No charging	1. Broken wire or shorted, loose connection 2. Faulty coil due to short or grounding 3. Faulty or shorted silicon diode 4. Broken or shorted lead wire at regulator 5. Regulator voltage at no load is too low	Repair or replace Replace Replace Repair or replace Readjust
Insufficient charging	1. Wiring - Broken wire, intermittent shorting or loose connection 2. Generator - Shorting across layer in the field coil (resistance indicated in continuity test) - Shorting across layer in stator coil - Open circuit in one of the stator coil - Faulty or shorted silicon diode 3. Regulator - Voltage below specified value at no load - Dirty of pitted points - Coil or resistor internally shorted 4. Battery - Low electrolyte level - Defective battery plates	Repair, retighten Replace Replace Replace Replace Readjust Polish or replace Replace Add distilled water Replace
Excessive charging	1. Wiring P terminal circuit and F terminal circuit shorted resulting in split wound generator 2. Battery Internal short 3. Regulator - Excessive voltage at no load voltage - Improper grounding - Broken coil lead wire	Repair Replace Repair Provide proper ground Repair, replace
Unstable charging voltage	1. Wiring - Bare wire shorting intermittently under vibration or broken wire making partial contact 2. Generator - Layer short (intermittent shorting) 3. Generator - Intermittent open circuit in the coil - Improperly adjusted voltage - Defective key switch - Dirty points	Repair or replace Repair or replace Repair or replace Readjust Replace Clean

Trouble	Probable causes	Remedies
Self discharge Battery discharges in addition to that caused by the connected load.	1. Dirty contact areas and case. 2. Contaminated electrolyte or electrolyte excessively concentrated.	1. Always maintain the exterior clean. 2. Handle the replenishing electrolyte with care.
C. Large discharge rate Specific gravity gradually lowers and around 1.100 (S. G.), the winker and horn no longer function.	1. The fuse and the wiring are satisfactory but loads such as winker and horn do not function. In this condition the motorcycle will operate but with long use, both \oplus and Θ plates will react with the sulfuric acid and form lead sulfide deposits, (sulfation) making it impossible to recharge.	1. When the specific gravity falls below $1,200\left(20^{\circ} \mathrm{C}: 68^{\circ} \mathrm{F}\right)$, the battery should be recharged immediately. 2. When the battery frequently becomes discharged while operating at normal speed, check the generator for proper output. 3. If the battery discharges under normal charge output, it is an indication of overloading, remove some of the excess load.
High charging rate The electrolyte level drops rapidly but the charge is always maintained at 100% and the condition appears satisfactory. (Specific gravity over 1.260)	1. The deposit will heavily accumulate at the bottom and will cause internal shorting and damage the battery.	1. Check to assure proper charging rate.
Specific gravity drop Electrolyte evaporates	1. Shorted. 2. Insufficient charging. 3. Distilled water overfilled. 4. Contaminated electrolyte.	1. Check specific gravity measurement. 2. If the addition of distilled water causes a drop in specific gravity, add sulfuric acid and adjust to proper value.
Sulfation The electrode plates are covered with white layer or in spot.	1. Charging rate is too small or else excessively large. 2. The specific gravity or the mixture of the electrolyte is improper. 3. Battery left in a discharge condition for a long period. (left with the switch turned on) 4. Exposed to excessive vibration due to improper insulation. 5. Motorcycle stored during cold season with battery connected.	1. When motorcycle is in storage, the battery should be recharged once a month even though the motorcycle is not used. 2. Check the electrolyte periodically and always maintain the proper level. 3. In a lightly discharged condition, perform recharging and discharging several times by starting the engine may be sufficient.
Spark plug electrode coated with carbon deposit	1. Too rich a fuel. 2. Excessive idle speed. 3. Poor quality gasoline. 4. Clogged air cleaner. 5. Use of cold spark plug.	Adjust carburetor. Adjust idle speed. Use good quality gasoline. Service the air cleaner. Use proper heat range plug.
Spark plug electrode fouled with oil	1. Worn piston ring. 2. Worn piston and cylinder. 3. Excessive clearance between valve guide and valve stem.	Replace piston ring. Replace piston or cylinder. Replace valve guide or valve.
Spark plug electrode overheated or burnt	1. Use of hot spark plug. 2. Engine overheating. 3. Improper ignition timing 4. Loose spark plug or damaged spark plug hole thread. 5. Too lean a fuel mixture.	Use proper heat range plug. Readjust ignition timing. Retighten plug or replace cylinder head. Adjust carburetor.
Damage	Spark plug overtorqued.	Replace with a new spark plug.

12. MAINTENANCE SCHEDULE

This maintenance schedule is based upon average riding conditions. Machines subjected to severe use, or ridden in unusually dusty areas, require more frequent servicing.	$\begin{aligned} & \text { INITIAL } \\ & \text { SERVICE } \\ & \text { PERIOD } \\ & \hline \end{aligned}$	REGULAR SERVICE PERIOD Perform at every indicated month or mileage interval, whichever occurs first.			
	500 miles	1 month 500 miles	3 months 1,500 miles	$\begin{aligned} & 6 \text { months } \\ & 3,000 \text { miles } \end{aligned}$	12 months 6,000 miles
ENGINE OIL-Change	-		\bigcirc		
OIL FILTER ELEMENT-Replace	-			\bigcirc	
OIL FILTER SCREEN-Clean					\bigcirc
SPARK PLUGS - Clean and adjust gap or replace if necessary.				\bigcirc	
*CONTACT POINTS AND IGNITION TIMING -Clean, check, and adjust or replace if necessary.	-			\bigcirc	
$\begin{aligned} & \text { *VALVE TAPPET CLEARANCE } \\ & \text {-Check, and adjust if necessary. } \end{aligned}$	\bigcirc			\bigcirc	
*CAM CHAIN TENSION-Adjust	-			\bigcirc	
PAPER AIR FILTER ELEMENT AND POLYURETHAN FOAM ELEMENT-Clean	$\binom{\text { Service more frequently if }}{\text { operated in dusty areas }}$			\bigcirc	
PAPER AIR FILTER ELEMENT-Replace					\bigcirc
*CARBURETORS-Check, and adjust if necessary.	-			\bigcirc	
THROTTLE OPERATION -Inspect cables. Check, and adjust free play.	-			\bigcirc	
FUEL FILTER SCREEN-Clean				\bigcirc	
FUEL LINES-Check				\bigcirc	
*CLUTCH-Check operation, and adjust if necessary.	-			\bigcirc	
DRIVE CHAIN -Check, lubricate, and adjust if necessary.	**	\bigcirc			
BRAKE FLUID LEVEL -Check, and add fluid if necessary.	-			\bigcirc	
*BRAKE SHOES/PADS -Inspect, and replace if worn.				\bigcirc	
BRAKE CONTROL LINKAGE -Check linkage, and adjust free play if necessary.	\bigcirc			\bigcirc	
*WHEEL RIMS AND SPOKES-Check. Tighten spokes and true wheels, if necessary.	\bigcirc			\bigcirc	
TIRES-Inspect and check air pressure.	-	\bigcirc			
FRONT FORK OIL-Drain and refill.	***				\bigcirc
FRONT AND REAR SUSPENSION -Check operation.	-			\bigcirc	
REAR FORK BUSHING -Grease, check for excessive looseness.				\bigcirc	
*STEERING HEAD BEARING-Adjust					\bigcirc
BATTERY-Check electrolyte level, and add water if necessary.	\bigcirc		\bigcirc		
LIGHTING EQUIPMENT -Check and adjust if necessary.	-	\bigcirc			
ALL NUTS, BOLTS, AND OTHER FASTENERS -Check security and tighten if necessary.	\bigcirc	\bigcirc			

Items marked * should be serviced by an authorized Honda dealer, unless the owner has proper tools and is mechanically proficient. Other maintenance items are simple to perform and may be serviced by the owner.
** INITIAL SERVICE PERIOD 200 MILES
*** INITIAL SERVICE PERIOD 1,500 MILES

13. TECHNICAL DATA

A. Specifications of CB 500

〔CB $500 \mathrm{~K} 1, \mathrm{~K} 2$ 〕

	Item	English	Metr	
	Overall Length	83.0 in. (83.5in.)	$2,105 \mathrm{~mm}$ (2, 120 mm)	
	Overall Width	32.5 in.	825 mm	
	Overall Height	44.0 in.	1,115 mm	
	Wheel Base	55.5 in.	1, 405 mm	
	Seat Height	31.7 in .	805 mm	
	Foot Peg Height	12. 4 in .	315 mm	
	Ground Clearance	6.5 in .	165 mm	
	Dry Weight	403.5 lb .	183 kg	
\|	Type	Double cradle tubular steel		
	F. Suspension, Travel	Telescopic fork, travel 4.8 in.,	121 mm	
	R. Suspension, Travel	Swing arm, travel 3.1 in .,	78.5 mm	
	F. Tire Size, Type	3.15-19 (4 PR)(3.25-19) (4PR) Rib tire, tire air pressure $\begin{aligned} & 25.6 \mathrm{psi} \\ & 28.5 \mathrm{psi}\end{aligned}$		$\begin{aligned} & 1.8 \mathrm{~kg} / \mathrm{cm}^{2} \\ & 2.0 \mathrm{~kg} / \mathrm{cm}^{2} \end{aligned}$
	R. Tire Size, Type	3. $50-18$ (4 PR) Block tire, tire air pressure 28.5 psi		$2.0 \mathrm{~kg} / \mathrm{cm}^{2}$
	F. Brake, Lining Area	Disc brake, lining area $32.36 \mathrm{in}^{2} \times 2$		$288.8 \mathrm{~cm}^{2} \times 2$
	R. Brake, Lining Area	Internal expanding shoe, lining area $26.28 \mathrm{in}^{2} \times 2$		$169.6 \mathrm{~cm}^{2} \times 2$
	Fuel Capacity	3.7 U.S. gal. 3.1 Imp. gal.	14.0 lit.	
	Fuel Reserve Capacity	1.6 U.S. gal. 0.9 Imp. gal.	4.0 lit.	
	Caster Angle	64°		
	Trail Length	4. 1 in.	105 mm	
	Front Fork Oil Capacity	5.4 ozs	160 cc	
	Type	Air-cooled, 4-stroke, O.H.C. engine		
	Cylinder Arrangement	4-cylinder in-line		
	Bore and Stroke	2. $205 \times 1.992 \mathrm{in}$.	$56.0 \times 50.6 \mathrm{~mm}$	
	Displacement	30.38 cu in .	498 cc	
	Compression Ratio	9.0		
	Carburetor, Venturi Dia.	Four, piston valve, 22 mm dia.		
	Valve Train	Chain drive overhead camshaft		
	Maximum Horsepower	$50 \mathrm{BHP}(\mathrm{SAE}) / 9,000 \mathrm{rpm}$ (44 BHP (SAE)/9, 000 rpm)		
	Maximum Torque	$30.4 \mathrm{lb}-\mathrm{ft} / 7,500 \mathrm{rpm}$	$4.2 \mathrm{~kg}-\mathrm{m} / 7,500 \mathrm{rpm}$	
	Oil Capacity	3.2 U.S. qt., 2.6 Imp. qt	3.0 lit.	
	Lubrication System	Forced pressure and wet sump		

A. Specifications of CB 550

	Item	English	Metric	
	Overall Length	83.5 in.	2.120 mm	
	Overall Width	32.5 in.	825 mm	
	Overall Height	43.9 in.	$1,115 \mathrm{~mm}$	
	Wheel Base	55.3 in.	1,405 mm	
	Seat Height	31.7 in .	805 mm	
	Foot Peg Height	12.4 in.	315 mm	
	Ground Clearance	6.3 in.	160 mm	
	Dry Weight	423 lb .	192 kg	
	Type	Double cradle frame		
	F. Suspension, Travel	Telescopic fork, travel 4.8 in.	121 mm	
	R. Suspension, Travel	Swing arm, travel 3.0 in.	77.3 mm	
	F. Tire Size, Type	$3.25-19$ (4PR) Rib tire, tire air pressure 28 psi		$2.0 \mathrm{~kg} / \mathrm{cm}^{2}$
	R. Tire Size, Type	3.75-18 (4 PR) Block tire, tire air pressure 34 psi		$2.4 \mathrm{~kg} / \mathrm{cm}^{2}$
近	F. Brake, Lining Area	Disk brake, lining area $32.36 \mathrm{in}^{2} \times 2$		$288.8 \mathrm{~cm}^{2} \times 2$
盛	R. Brake, Lining Area	Internal expanding shoe, lining area $26.28 \mathrm{in}^{2} \times 2$		$169.6 \mathrm{~cm}^{2} \times 2$
	Fuel Capacity	3.7 U.S. gal. 3.1 Imp. gal.	14.0 lit.	
	Fuel Reserve Capacity	1.1 U.S. gal. 0.9 Imp.gal.	4.0 lit.	
	Caster Angle	64°		
	Trail Length	4.1 in.	105 mm	
	Front Fork Oil Capacity	$6.3-6.5$ ozs	$185-191$ cc	
	Type	Air-cooled, 4-stroke, O.H.C. engine		
	Cylinder Arrangement	4-cylinder in-line		
	Bore and Stroke	2.303×1.992 in.	$58.5 \times 50.6 \mathrm{~mm}$	
	Displacement	33.19. cu. in.	544 cc	
	Compression Ratio	9.0		
	Carburetor, Venturi Dia.	Four, piston valve, 22 mm dia.		
	Valve Train	Chain drive overhead camshaft		
	Maximum Horsepower	$50 \mathrm{BHP}(\mathrm{SAE}) / 8,500 \mathrm{rpm}$		
	Maximum Torque	$30.4 \mathrm{lb}-\mathrm{ft} / 7,500 \mathrm{rpm}$	$4.2 \mathrm{~kg}-\mathrm{m} / 7,500 \mathrm{rpm}$	
	Oil Capacity	3.2 U.S. qt., 2.6 Imp. qt	$3.0 \text { lit. }$	
	Lubrication System	Forced pressure and wet sump		

B. Service Data (CB 500)

ENGINE

Item	Standard value	Serviceable limit
Inlet cam height	$34.93 \sim 34.97$ $(1.3742 \sim 1.3768)$	$35.85(1.4075)$
Exhaust cam height	$34.53 \sim 34.57$ $(1.3595 \sim 13.610)$	$34.45(1.3563)$
Runout	-	$0.1(0.004)$

Item	Standard value	Serviceable limit
Cylinder bore	$56 \sim 56.01$ $(2.204 \sim 2.205)$	$56.1(2.208)$

Item	Standard value	Serviceable limit
Piston dia.	$55.99 \sim 55.97$ $(2.204 \sim 2.203)$	$55.85(2.198)$
Piston pinhole	-	$15.08(0.593)$

Item	Standard value	Serviceable limit
Piston ring end gap	$0.15 \sim 0.35$ $(0.005 \sim 0.013)$	$0.7(0.027)$

Piston ring Side clearance	Standard value	Serviceable limit
Top ring	$0.040 \sim 0.075$ $(0.0015 \sim 0.0029)$	$0.18(0.007)$
Second ring	$0.025 \sim 0.06$ $(0.0009 \sim 0.0023)$	$0.15(0.005)$
Oil ring	$0.020 \sim 0.055$ $(0.0007 \sim 0.0021)$	$0.15(0.005)$

Item	Standard value	Serviceable limit
Ring groove clearance	$15.002 \sim 15.008$ $(0.59063 \sim 0.59087)$	Replace if over $15.080(0.5937)$

	Standard value	Serviceable limit
Valve stem clearance	$\begin{aligned} & \text { Inlet } \\ & 0.010 \sim 0.035 \\ & (0.00039 \sim 0.00137) \end{aligned}$	$\begin{gathered} 0.080 \\ (0.0031) \\ \hline \end{gathered}$
	$\begin{aligned} & \text { Exhaust } \\ & 0.030 \sim 0.050 \\ & (0.0011 \sim 0.0019) \end{aligned}$	$\begin{gathered} 0.10 \\ (0.0039) \end{gathered}$
Valve stem diameter	$\begin{aligned} & \text { Inlet } \\ & 5.450 \sim 5.465 \\ & (0.2145 \sim 0.2150) \end{aligned}$	
	$\begin{aligned} & \text { Exhaust } \\ & 5.430 \sim 5.445 \\ & (0.2137 \sim 0.2142) \end{aligned}$	
Valve face runout	-	$\begin{gathered} 0.05 \\ (0.009) \end{gathered}$

		mm (in.)	
Item	Standard value	Serviceable limit	
Cylinder head flatness	-	0.3	

Item	Standard value	Serviceable limit
Valve spring free length	Outer $40.4(1.59)$ Inner $35.7(1.40)$	$39(1.53)$
	Outer $27.9 \mathrm{~mm} / 45.6 \sim 50.6 \mathrm{~kg}$ $(1.0 \mathrm{in} /$ Loading $100.54 \sim 111.57 \mathrm{lbs}-\mathrm{ft})$	
(reference)	Inner $23.2 \mathrm{~mm} / 19.1 \sim 21.1 \mathrm{~kg}$ $(0.9 \mathrm{in} /$ $421.15 \sim 464.35 \mathrm{lbs}-\mathrm{ft})$	
Clutch plate warp		$0.3(0.011)$

Oil pump	Standard value	Serviceable limit
Inner and outer rotor clearance	-	$0.35(0.013)$
Outer rotor and body clearance	-	$0.35(0.013)$

Item	Standard value	Serviceable limit
Friction disc thickness	$3.3(0.13)$	$3.0(0.11)$

	Standard value	Serviceable limit
Clutch spring free length	$31.9(1.25)$	$30.5(1.20)$
Spring strength	$31.4 \sim 33 \mathrm{~kg}$ at 23 mm $\binom{227.84 \sim 238.6}{$ at 0.90 in }	

Item	Standard value	Serviceable limit
Gear shift drum O. D.	$39.975 \sim 39.95$ $(1.5738 \sim 1.5728)$	$39.9(1.5709)$
Shift fork I. D.	$40.00 \sim 40.025$ $(1.5748 \sim 1.5757)$	$40.075(1.5797)$

Gear shift fork	Standard value	Serviceable limit
Center	$5.93 \sim 6.00$	5.60
$(0.233 \sim 0.236)$	(0.220)	
Right \& left	$4.93 \sim 5.0$	4.60
$(0.194 \sim 0.197)$	(0.181)	

Item	Standard value	Serviceable limit
Crankshaft journal clearance	$0.020 \sim 0.046$	$0.080(0.0031)$
Runout	-	$0.05(0.0019)$
Journal and taper	-	$0.05(0.0019)$

Item	Standard value	Serviceable limit
Connecting rod large end clearance	$0.02 \sim 0.046$ $(0.00079 \sim 0.00181)$	$0.08(0.0031)$

mm (in.)		
Item	Standard value	Serviceable limit
Connecting rod side clearance	$0.12 \sim 0.27$	0.35

Item	Standard value	Serviceable limit
Connecting rod small end clearance	$15.016 \sim 15.034$ $(0.5911 \sim 0.5918)$	15.07

Item	Standard value	Serviceable limit
1st, 2nd, 3rd gears backlash	$0.044 \sim 0.133$ $(0.0017 \sim 0.0051)$	0.2 (0.0078)
4th and 5th gears backlash	$0.046 \sim 0.140$ $(0.0018 \sim 0.0055)$	0.2
(0.0078)		

CHASSIS

Wheel	Standard value	Serviceable limit
Rim wobble	$0.5(0.020)$	$2.0(0.08)$
Wheel runout	$0.5(0.020)$	$2.0(0.08)$

Wheel bearing	Standard value	Serviceable limit
Front wheel bearing axial direction, TIR	$0.07(0.028)$	$0.1(0.004)$
Front wheel bearing radial direction, TIR	0.003	$0.05(0.002)$

Front brake	Standard value	Serviceable limit
Caliper cylinder inside dia.	$38.18 \sim 38.20$ $(1.5031 \sim 1.5039)$	$38.215(1.504)$
Caliper piston outside dia.	$38.115 \sim 38.48$ $(1.5006 \sim 1.5149)$	$38.105(1.500)$

Front brake	Standard value	Serviceable limit
Master cylinder	$14.0 \sim 14.043$ $(0.5511 \sim 0.5528)$	$14.055(0.533)$
Piston	$13.957 \sim 13.984$ $(0.5494 \sim 0.5505)$	$13.940(0.549)$

Wheel	Standard value	Serviceable limit
Rim runout, TIR (vertical and side)	$0.5(0.02)$	$2.0(0.08)$

Item	Standard value	Serviceable limit
Disc trueness	-	$0.3(0.011)$
Caliper and piston clearance	-	$0.11(0.004)$
Master cylinder and piston clearance	-	$0.11(0.004)$

	mm (in.)	
Rear axle shaft	Standard value	Serviceable limit
Bent, TIR	$0.01(0.0004)$	$0.2(0.009)$

Brake lining	Standard value	Serviceable limit
Thickness	$5.0(0.200)$	$2.0(0.080)$

Brake Drum	Standard value	Serviceable limit
Inside dia.	$179.8 \sim 180.0$ $(7.079 \sim 7.087)$	$181.0(7.125)$

Item	Standard value	Serviceable limit
Axial, TIR	$0.07(0.0028)$	$0.1(0.004)$
Radial, TIR	$0.003(0.00011)$	$0.05(0.002)$

	Standard value	Serviceable limit
Front suspension spring I.D.	$42(1.65)$	
Free length	$451.7(17.78)$	$425(16.73)$
Tilt	$5(0.02)$	$8(0.03)$

Item	Standard value	Serviceable limit
Rear suspension free length	$210.4(8.283)$	$205(8.070)$

Item	Standard value	Serviceable limit
Clearance	$0.1 \sim 0.3$ $(0.004 \sim 0.012)$	$0.5(0.02)$
Rear fork bushing inside dia.	$21.448 \sim 21.5$ $(0.844 \sim 0.846)$	$21.8(0.858)$
Center collar outside dia.	$21.427 \sim 21.46$ $(0.843 \sim 0.844)$	$21.4(0.842)$

ELECTRICAL

Item	Standard value	Serviceable limit
Carbon brush length	$12 \sim 31 \mathrm{~mm}$ $(0.47 \sim 0.51 \mathrm{in})$	5.5 mm $(0.22 \mathrm{in})$
Brush spring tension	$0.5 \sim 0.5 \mathrm{~kg}$	0.4 kg $(1.1 \sim 1.3 \mathrm{lbs})$

B. Service Date (CB 550)

ENGINE

Item	Standard value	Serviceable limit
Inlet cam height	$34.93 \sim 34.97$ $(1.3742 \sim 1.3768)$	$35.85(1.4075)$
Exhaust cam height	$34.53 \sim 34.57$ $(1.3595 \sim 13.610)$	$34.45(1.3563)$
Runont	-	$0.1 \quad(0.004)$

Item	Standard value	Serviceable limit
Cylinder bore	$58.50 \sim 58.51$ $(2.303 \sim 2.304)$	$58.6(2.307)$

Item	Standard value	Serviceable limit
Piston dia.	$54.47 \sim 58.49$ $(2.301 \sim 2.30)$	$58.35(2.302)$
Piston pinhole	-	$15.08(0.593)$

Item		Standard value	Serviceable limit
Piston ring end gap	Top	2nd	$0.15 \sim 0.35$ $(0.005 \sim 0.013)$
oil	$0.3 \sim 0.9$ $(0.01 \sim 0.035)$	$1.1(0.027)$	

Piston ring Side clearance	Standard value	Serviceable limit
Top ring	$0.040 \sim 0.075$ $(0.0015 \sim 0.0029)$	$0.18(0.007)$
Second ring	$0.025 \sim 0.06$ $(0.0009 \sim 0.0023)$	$0.15(0.005)$
Oil ring	-	-

Item	Standard value	Serviceable limit
Ring groove clearance	$15.002 \sim 15.008$ $(0.59063 \sim 0.59087)$	Replace if over $15.080(0.6937)$

	Standard value	Serviceable limit
Valve stem clarance	$\begin{aligned} & \text { Inlet } \\ & 0.020 \sim 0.045 \\ & (0.00079 \sim 0.00177) \end{aligned}$	$\begin{gathered} 0.080 \\ (0.0031) \end{gathered}$
	$\begin{aligned} & \text { Exhaust } \\ & 0.030 \sim 0.050 \\ & (0.0011 \sim 0.0019) \end{aligned}$	$\begin{gathered} 0.10 \\ (0.0039) \end{gathered}$
Valve stem diameter	$\begin{aligned} & \text { Inlet } \\ & \quad 5.450 \sim 5.465 \\ & (0.2145 \sim 0.2150) \end{aligned}$	
	$\begin{aligned} & \text { Exhaust } \\ & 5.430 \sim 5.445 \\ & (0.2137 \sim 0.2142) \end{aligned}$	
Valve face runount	-	$\begin{gathered} 0.05 \\ (0.009) \\ \hline \end{gathered}$

	mm (in.)	
Item	Standard value	Serviceable limit
Cylinder head flatness	-	0.3

Item	Standard value		Serviceable limit
Valve spring free length	Outer	40.4(1.59)	39 (1.53)
	Inner	35.7(1.40)	34.5(1.35)
Loading (reference)	Outer $27.9 \mathrm{~mm} 45.6 \sim 50.6 \mathrm{~kg} /$ (1.0 in/ $100.54 \sim 111.57 \mathrm{lbs}-\mathrm{ft})$ Inner $\begin{aligned} & 23.2 \mathrm{~mm} / 19.1 \sim 21.1 \mathrm{~kg} \\ & (0.9 \mathrm{in} / \\ & 421.15 \sim 464.35 \mathrm{lbs}-\mathrm{ft}) \end{aligned}$		
Clutch plate warp			0.3(0.011)

Oil pump	Standard value	Serviceable limit
Inner and outer rote clearance	-	$3.35(0.013)$
Outer rotor and body clearance	-	$0.35(0.013)$

Item	Standard value	Serviceable limit
Friction disc thickness	$2.6(0.12)$	$2.3(0.09)$

	Standard value	Serviceable limit
Cutch spring free length	$36.8(1.45)$	$35.4(1.39)$
Spring strength	$22.1 \sim 33.2$ at 23 mm $\binom{227.84 \sim 238.6}{$ at 0.90 in }	

Item	Standard value	Serviceable limit
Gear shift drum O. D.	$39.975 \sim 59.95$ $(1.5738 \sim 1.5728)$	$39.9(1.5709)$
Shift fork I. D.	$40.00 \sim 40.025$ $(1.5748 \sim 1.5757)$	40.075(1.5797)
Gear shift fork Standard value		
Center	$5.93 \sim 6.00$ $(0.233 \sim 0.236)$	5.60 (0.220)
Right \& left	$4.93 \sim 5.0$ $(0.194 \sim 0.197)$	4.60 (0.181)

Item	Standard value	Serviceable limit
Crankshaft journal clearance	$0.020 \sim 0.046$ $(0.00079 \sim 0.00181)$	$0.080(0.0031)$
Runout	-	$0.05(0.0019)$
Journal and taper	-	$0.05(0.0019)$

Item	Standard value	Serviceable limit
Connecting rod large end clearance	$0.02 \sim 0.046$ $(0.00079 \sim 0.00181)$	$0.08(0.0031)$

	mm (in.)	
Item	Standard value	Serviceable limit
Connecting rod side clearance	$0.12 \sim 0.27$ $(0.0047 \sim 0.0106)$	0.35 (0.0138)

Item	Standard value	Serviceable limit
Connecting rod small end clearance	$15.016 \sim 15.034$ $(0.5911 \sim 0.5918)$	(0.5930)

Item	Standard value	Serviceable limit
1st, 2nd, 3rd gears backlash	$0.044 \sim 0.133$ $(0.0017 \sim 0.0051)$	0.2 (0.0078)
4th and 5th gears backlash	$0.046 \sim 0.140$ $(0.0018 \sim 0.0055)$	0.2 (0.0078)

CHASSIS

Wheel	Standard value	Serviceable limit
Rim wobble	$0.5(0.020)$	$2.0(0.08)$
Wheel runout	$0.5(0.020)$	$2.0(0.08)$

Wheel bearing	Standard value	Serviceable limit
Front wheel bearing axial direction, TIR	$0.07(0.028)$	$0.1(0.004)$
Front wheel bearing radial direction, TIR	0.003 (0.00012)	$0.05(0.002)$

Front brake	Standard value	Serviceable limit
Caliper cylinder inside dia.	$38.18 \sim 38.20$ $(1.5031 \sim 1.5039)$	$38.215(1.504)$
Caliper piston outside dia.	$38.115 \sim 38.48$ $(1.5006 \sim 1.5149)$	$38.105(1.500)$

Front brake	Standard value	Serviceable limit
Master cylinder	$14.0 \sim 14.043$ $(0.5511 \sim 0.5528)$	$14.055(0.533)$
Piston	$13.957 \sim 13.984$ $(0.5494 \sim 0.5505)$	$13.940(0.549)$

Wheel	Standard value	Serviceable limit
Rim runout, TIR (vertical and side)	$0.5(0.02)$	$2.0(0.08)$

Item	Standard value	Serviceable limit
Disc trueness	-	$0.3(0.011)$
Caliper and piston clearance	-	$0.11(0.004)$
Master cylinder and piston clearance	-	$0.11(0.004)$

	mm (in.)	
Rear axle shaft	Standard value	Serviceable limit
Bent, TIR	$0.01(0.0004)$	$0.2(0.009)$

Brake lining	Standard value	Serviceable limit
Thickness	$5.0(0.200)$	$2.0(0.080)$

Brake Drum	Standard value	Serviceable limit
Inside dia.	$179.8 \sim 180.0$ $(7.079 \sim 7.087)$	$181.0(7.125)$

Item	Standard value	Serviceable limit
Axial, TIR	$0.07(0.0028)$	$0.1(0.004)$
Radial, TIR	$0.003(0.00011)$	$0.05(0.002)$

	Standard value	Serviceable limit
Front suspension spring I.D.	$42(1.65)$	
Free length	$451.7(17.78)$	$425(16.73)$
Tilt	$5(0.02)$	$8(0.03)$

Item	Standard value	Serviceable limit
Rear suspension free length	$210.4(8.283)$	$205(8.070)$

Item	Standard value	Serviceable limit
Clearance	$0.1 \sim 0.3$ $(0.004 \sim 0.012)$	$0.5(0.02)$
Rear fork bushing inside dia.	$21.448 \sim 21.5$ $(0.844 \sim 0.846)$	$21.8(0.858)$
Center collar outside dia.	$21.427 \sim 21.46$ $(0.843 \sim 0.844)$	$21.4(0.842)$

ELECTRICAL

Item	Standard value	Serviceable limit
Carbon brush length	$12 \sim 31 \mathrm{~mm}$ $(0.47 \sim 0.51 \mathrm{in})$	5.5 mm $(0.22 \mathrm{in})$
Brush spring tension	$0.5 \sim 0.5 \mathrm{~kg}$ $(1.1 \sim 1.3 \mathrm{lbs})$	0.4 kg $(0.8 \mathrm{lbs})$

14. WIRING DIAGRAM

CB 500

CB 550

-

Wiring diagram of CB 550

Refer to the following illustrations for location of the wires, cables, and leads.

(1) Speedometer
(2) Tachometer
(3) Front brake cable
(4) Front brake switch wire
(5) Harness band
(6) Lighting kill switch wire
(7) Throttle cable A
(10) Speedometer cable
(8) Throttle cable B
(9) Tachometer cable

[^0]4) Choke cable
(5) Wire harness clip
(6) Clutch clamp
(7) Throttle cable B
(8) Throttle cable A
(9) Point breather tube

$-\mathbf{A}-$
Adjust ignition timing 11

- valve tappet clearnce 7
- cam chain 13
- carburetor 8
Alternator generator 93
Air cleaner 16, 119
$-\mathrm{B}-$
Battery 102
Bleeding brake system 15, 73
Brakes 65
Brake caliper adjustment 14
Brake lever travel 72
Brake pedal travel 15
Brake lining wear mchitor 112
Body electrical 87
Body 84
Bore and stroke 115
Blow-by gus 108
Bulb 116
- \mathbf{C} -
Cam chain tensioner 13, 46
Carburetor 57
Camshaft 24
- holder 24
Charging system 93
Change oil and oil filter 13
Clutch 40, 107, 115
Compression ratio 115
- test 17
- pressure 17
Condenser 92
Connecting rod 51
Contact breaker 92
Crankshaft 48
Cylinder 24
- arrangement 24
- bore 27
Cylinder head 24
$-\mathrm{D}-$
Displacement 115
Drive chain 16
$-\mathbf{E}-$Engine installation20
Engine removal 20
$-\mathbf{F}-$
Final drive 56
Final reduction 56
Front brake 65
Front suspension 79, 110
Front wheel and tire 65
Fuel tank capacity 115
Fuel strainer 85
Fuel tank 84
Gear ratio 116
Gear shift drum 43
Gear shift drum stopper 43
Generator 95
$-\mathbf{H}-$
Horn 107
- I -
Idling speed 9
Ignition timing 11
Ignition system 89
Ignition coil 89
- K -
Kick starter pedal 53
$-\mathbf{L}-$
Lubrication system 36
$-\mathbf{M}$ -
Main ignition switch 107
Maintenance operation 7
-N -
Neutral switch 106
- 0 -
Oil filter 14, 39
- element 14
Oil pump 39
Oil pressure switch 105
Oil warning lamp 87
Oil screen 37
Oil drain plug 20
$-\mathbf{P}-$
Piston 27
Piston pin 26
Piston ring 28
Primary chain 48
Primary shaft 54
$-\mathbf{R}-$
Rear brake 15, 73
Rear suspension 82
Rear fork 82
Rear wheel 73
Regulator 96
Relief valve 37
Rocker arm 35
- shaft 35
$-\mathbf{S}-$
Service air cleaner 85
- battery 16, 102
- spark plug 13, 91
Special tools 3
Silicone rectifier97
Spark advancer 92
Spark plug 13, 91
Specifications 115
Starting clutch 48
Starter magnetic switch 101
Starting motor 99
Starting moter safety unit 109
- cable 99
Steering 77
Stop switch 107
- T -
Technical data 115
Throttle valve 61
Trouble shooting 107
Transmission 37
-V -
Valve 34
Vacuum gauge. 5
Valve timing 31
$-\mathbf{W}-$
Winker switch 104
Wiring diagram 119

16. SUPPLEMENT TO CB550K1

1. FUEL COCK

The fuel cock is new for the revised model. Concurrent with this change, the indication marks and their positions on fuel cock was changed.

Inspection and cleaning

1. Place the fuel lever in the "OFF" position; disconnect the fuel tubes. Take out the fuel tank.
2. Drain the fuel tank thoroughly.
3. Loosen the fuel cock fixing nut and then remove the fuel cock and fuel filter from the fuel tank.
4. Check the gasket to see if it is not damaged. Replace with a new one, if found to be damaged too badly beyond use.
5. Wash the fuel filter in solvent and dry with compressed air. Any slightest damage cannot be tolerated here. Also replace the filter with a new one if found to be clogged.
6. Install the fuel filter to the fuel cock with the fixing nut. Do not forget to install the gasket into the groove of the fixing nut.
7. Install the fuel cock to the fuel tank with the fixing nut.
8. Install the fuel tank in place on the frame; connect tubes and secure with the clips.
9. Fill the tank with fuel. With the fuel cock lever in the "ON" position, check for any leakage past the tube joints or connections.

Fig. K1-1 (1) Fuel cock
(2) Lever
(3) Fuel cock fixing nut

Fig. K1-2 (1) Fuel cock
(2) Fixing nut
(3) Gasket
(4) Fuel filter

Fig. K1-3 (1) Throttle grip (2) Spring adjuster
(3) Adjusting bolt

Fig. K1-4
(1) Side stand ba
(2) Spring
(3) Rubber pad
(4) 6 mm bolt
(5) Side stand pivot bolt

Fig. K1-5 (1) Side stand bar (2) Spring scale

Fig. K1-6 (1) Wear line

2. THROTTLE GRIP

The throttle grip adjuster, Fig. K1-3, hitherto offered, was discontinued.

3. SIDE STAND

The side stand was changed to a new type with a shock absorbing rubber pad. The side stand must be inspected periodically to determine that it is in good condition.

Inspection

1. Check the entire stand assembly (side stand bar, bracket and rubber pad) for installation, deformation or otherwise excessive damage.
2. Check the spring for freedom from damage or other defects.
3. Check the side stand for proper return operation :
a. With the side stand applied, raise the stand off the ground by using the main stand.
b. Attach a spring scale to the lower end of the stand and measure the force with which the stand is returned to its original position.
c. The stand condition is correct if the measurement falls within $2 \sim 3 \mathrm{~kg}$ (4.4~6.6lbs.).

If the stand requires force exceeding the above limit, this might be due to neglected lubrication, overtightened side stand pivot bolt, worn stand bar or bracket, or otherwise excessive tension. Replace as necessary.
4. Check the rubber pad for deterioration or wear. When the rubber pad wear is excessive so that it is worn down to the wear line, replace it with a new one.

Rubber pad replacement

1. Remove the 6 mm bolt; separate the rubber pad from the bracket at the side stand.
2. After making sure the collar is installed, put a new rubber pad in place in the bracket with the arrow mark out.

Note:

Use rubber pad having the mark "OVER 260 lbs ONLY".
3. Secure the rubber pad with the 6 mm bolt.

4. TURN SIGNAL LIGHT

The front and rear turn signal lights were changed to new, larger types. See Figs. K18 and K1-9.

Fig. K1-7 (1) Rubber pad
(2) Collar

Fig. K1-8 (1) Front turn signal light

Fig. K1-9 (1) Rear turn signal light

5. MAINTENANCE SCHEDULE

Some additions occured in the MAINTENANCE SCHEDULE, of which detailes are as shown immediately below :

This maintenance schedule is based upon average riding conditions. Machines subjected to severe use, or ridden in unusually dusty areas, require more frequent servicing.	$\begin{aligned} & \text { INITIAL } \\ & \text { SERVICE } \\ & \text { PERIOD } \end{aligned}$	REGULAR SERVICE PERIOD Perform at every indicated month or mileage interval, whichever occures first.			
	500 miles	1 month	3 months	6 months	12 months
		500 miles	1,500 miles	3,000 miles	6,000 miles
*SIDE STAND-Check installation, operation, deformation, damage and wear.				\bigcirc	

Items marked * should be serviced by an authorized Honda dealer, unless the owner has proper tools and is mechanically proficient. Other maintenance items are simple to perform and may be serviced by the owner.
6. WIRING DIAGRAM

CB550F-A norawnusitr

Engine No. CB550FE-1000001 and subsequent.
Frame No. CB550F -1000001 and subsequent.
Insert this addendum in rear of page 152 of the CB 550 Shop Manual.

ENGINE

GEAR SHIFT MECHANISM

A. Disasembly

1. Remove the clutch assembly. (See page 121.)
2. Remove the gear change pedal.
3. Remove the shift drum stop bolt, then remove the neutral stop bolt, shift drum stop and neutral stop.

Fig. 1-1 (1) Shift drum stop bolt
(2) Neutral stop bolt
4. Lower the gear shift arm as shown and remove the gear shift spindle.

B. Inspection

1. Check the shift drum stop and neutral stop for bend or damage.
2. Check the shift drum stop and neutral stop rollers for wear.

Fig. 1-2 (1) Gear shift arm
(2) Gear shift spindle

Fig. 1-3 (1) Shift drum stop
(2) Shift drum stop springs
(3) Shift drum neutral stop

Fig. 1-4 (1) Bearing set plate on primary shaft side
(2) Shift drum neutral stop
(3) Shift drum stop
(4) Bearing set plate on shift drum side
(5) Gear shift spindle

Fig. 1-5 (1) Main shaft fourth gear
(2) Main shaft top gear
(3) Bushings

C. Reassembly

To reassemble the gear shift mechanism, reverse the disassembly procedures. Pay attention to the following points:

1. As shown in Fig. 1-3, attach one of the shift drum stop springs to the shift drum stop and shift drum neutral stop, then attach the other shift drum stop spring to the arm and body of the shift drum stop. After that, secure the shift drum stop and shift drum neutral stop using the neutral stop bolt and shift drum stop bolt and collar.
2. Turn the gear shift drum and check if each part moves smoothly.
3. Install the gear shift arm and check if it moves smoothly in either direction.
4. Install the clutch assembly. (See page 122.)

Bushings

A bushing is pressed in the main shaft fourth gear and top gear respectively. (Those gears of the model CB550 do not contain bushings.)

FRAME

FRONT SUSPENSION

A. Disassembly

1. Before remove the front fork bolt, leave it loosened.
2. Remove the front wheel referring to page 65.
3. Remove the caliper assembly from the left front fork.
4. Remove the front fender, remove the front fork pipe retaining bolts, then pull the front fork out downward.
5. Remove the front fork bolt and drain the front shock absorber oil.

Fig. 2-2 (1) Front fork retaining bolt
(2) Front fork bolt

Fig. 2-3 (1) Allen head wrench

Fig. 2-4 (1) Oil seal stop ring (2) Oil seal

Fig. 2-5 (1) Front shock absorber spring
(2) Front fork pipe
(3) Bottom pipe
(4) Bottom case

Fig. 2-6 (1) Allen head wrench (2) Bottom case
6. With the front fork bottom case held in a vise, remove the socket bolt using an Allen head wrench (Tool No. 079173230000) and separate the fork pipe from the fork bottom case.
7. Remove the front fork bolt and lock nut, then remove the front shock absorber spring, under seat pipe and rebound spring.
8. Remove the oil lock piece from the bottom case.
9. Remove the front fork oil seal, then remove the oil seal stop ring.

B. Inspection

1. Measure the front shock absorber spring free length. Also check the spring for tension.
2. Check the front fork piston ring for wear.
3. Check the front fork pipe to bottom case clearance.
4. Check the oil seal for scores, scratches or breakage.
5. Check the front fork pipe sliding surface for scores or scratches.

C. Reassembly

To reassemble the front suspension, reverse the disassembly procedures. Pay attention to the following points:

1. Install the fork pipe into the bottom case. Apply a coat of thread lock cement to the socket bolt and tighten it using an Allen head wrench.
2. Apply a coat of ATF (automatic transmisson fluid) to the inner and outer circumferences of the oil seal, then install it using a fork seal driver (Tool No. 07947-3290000).

NOTES:

1. Do not forget to install the oil seal stop ring. Install it properly.
2. Use a new oil seal.
3. Fill the fork pipe with ATF up to the specified level mark.

Capacity: $165 \sim 170 \mathrm{cc}(5.6 \sim 5.8$ ozs $)$
To fill dry fork assembly
4. Install the right and left front forks so their heights are equal. The chamfered edge on the fork pipe should align with the upper surface of the fork top bridge as shown.

NOTE:

Wipe oil, if any, off the fork pipes completely.
5. After installing the front fork, check:

- Smooth movement of the fork.
- Oil leakage from the oil seal.

Front shock absorber oil change

1. Remove the front fork bolt and drain bolt. With the front brake applied and the handlebar held, move the front five or six times to drain the oil.
2. Install the drain bolt and fill the fork pipe with new ATF from the upper side up to the specified level mark.

Fig. 2-7 (1) Oil seal
(2) Fork seal driver

Fig. 2-8 (1) Chamfered edge on front fork pipe

Fig. 2-9 (1) Front fork drain bolt

Fig. 2-10 (1) Air cleaner case
(2) Retaining clip
(3) Air cleaner element

Fig. 2-11 (1) Air cleaner element (2) Air gun

Fig. 2-12 (1) Breather element cover

Fig. 2-13 (1) Breather element cover
(2) Breather element
(3) Element cover seal

AIR CLEANER

1. Raise the seat, loosen the wing nuts, then remove the air cleaner cover.
2. Remove the retaining clip, then remove the air cleaner element.
3. Clean the element by tapping it lightly. If the element is still dirty, aplly air inside of the element.
4. Remove the element cover, then remove the breather element.
5. Immerse the breather element in soapsuds and lightly squeeze it for cleaning. After that immerse the element in new ATF, squeeze it lightly, then install.

WARNING:

Gasoline or low flash point solvents are highly flammable and must not be used to clean the breather elements.
6. Squeeze the end of the drain tube as shown Fig. 2-14 and drain the oil or water which may remain in the tube.
7. Install the air cleaner reversing the removal procedures.

NOTE:

Check the drain tube for clogging and routing.

Fig. 2-14 (1) Drain tube

Fig. 2-15 (1) 10 mm bolt

Fig. 2-16 (1) Joint nuts
(2) Exhaust pipe joints
3. Remove the protector bands A and b , then remove the protector. Remove the muffler stay, remove the muffler band bolt, then separate the four exhaust pipes and sealing gasket from the muffler.

B. Inspection

1. Check the exhaust pipe gaskets for damage.
2. Check the muffler sealing gasket for damage.

Fig. 2-17 (1) Exhaust pipe joint
(5) Muffler band
(9) Exhaust pipe protector
(2) Exhaust pipe joint collar
(6) Muffler sealing gasket
(10) Stand stop rubber A
(3) Exhaust pipe gaskets
(7) Protector band B
(4) Muffler stay
(8) Protector band A

Fig. 2-18 (1) Muffler band
(2) Protector band A
(3) Muffler band bolt

C. Reassembly

1. Install the sealing gasket, then connect the exhaust pipes to the muffler.
2. Install the muffler band, set the protector bands A and B to the exhaust pipe protector, then tighten the screw securely.
3. Install the exhaust muffler.

INSEPCCTION OF ELECTRICAL SYSTEM

1. Clutch switch

Attach the probes of a tester to the green and green/red leads of the clutch switch contained in the headlight case and operate the clutch lever to check for continuity. There should be continuity only when the clutch is disengaged.

2. Starting Switch

Remove the fuel tank and remove the connector cover by lcosening the 6 mm screw. Take the starting switch terminal out of the connector.

Check the switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table below. If there is continuity, the switch is in good condition.

Terminal	ST1	ST2	HL
Wire color	Black	Yellow/red	Black/red
FREE	O		O
PUSH	O		

3. Silicon diode

Using a tester check the diode for continuity in the normal and reverse directions. If there is continuity in the normal direction only, the diode is in good condition. If there is continuity or no continuity in both directions, the diode is defective.
CAUTION:
Do not use a megger for this test. High voltage may be applied to the diode, resulting in the damaged diode.

Fig. 2-19 (1) Clutch switch (3) Green/red lead (2) Green lead

Fig. 2-20 (1) Connector cover (3) Connector (2) 6 mm screw

Fig. 2-21 (1) Starting switch
(3) Black/red lead
(4) Yellow/red lead

Fig. 2-22 (1) Silicon diode

Fig. 2-24 (1) Dimmer switch
(2) Turn signal control switch

Fig. 2-25
(1) Brown/blue
(7) Light blue
(2) White
(8) Orange
(3) Blue
(9) Brown/white
(4) Black/yellow
(10) Green
(5) Light blue/white
(11) Light green
(6) Orange/white

4. Main switch

Place the switch key inOFF, ON or PARK position and check the switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table below. If there is no continuity or if there is continuity between other circuits than those shown in the table, the switch is defective.

Terminal	BAT	IG	TL1	TL2	PA
Wire color	Red	Black	Brown	Brown/White	Brown
Lock					
OFF					
RUN	O	O	0		
PA	O				

5. Dimmer switch and turn signal control switch

Remove the fuel tank, remove the connector cover, then take out the leads shown in the table below. Check each switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table. If there is continuity, the switch is in good condition. If there is no continuity, the switch is defective.

Terminal	W	B	L	R Light Blue
Wire color	Green	Blue Brown	Orenge	-
L_{2}	O			
$\mathrm{~L}_{1}$	O			
N				
R_{1}	O			-
R_{2}	O	O		

Terminal	TL	PL	PR	HO
Wire color	Brown white	Orenge white	Light blue white	Liht green
L_{2}	O-		-	
L_{1}	O		-	O
N	O-	O-	-	
R_{1}	\bigcirc	-0		
R_{2}	O-	\bigcirc		

Terminal	HL	Hi	Lo
Wire color	Black/yellow	Blue	white
Hi	O	O	
(N)	O	O	O
Lo	O		O

6. Horn switch

Remove the fuel tank, remove the connector cover, then take out the gray lead as shown. Attach one prove of a radio tester to the body and the other probe to the gray lead. There should be continuity when the horn button is pushed.

Fig. 2-26 (1) Horn switch
(2) Gray lead

Fig. 2-27 (1) Engine stop switch
(2) Black
(3) Black/white

7. Engine stop switch

Remove the fuel tank and remove the connector cover. Check the switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table below. If there is no continuity, the switch is defective.

Terminal	IG	RUN
Wire color	Black	Black/white
OFF		
RUN	O	
OFF		

COMBINATION LIGHT

A. Disassembly

1. Remove the three 4 mm screws and remove the combination light cover.

Fig. 2-28 (1) 4 mm tapping screws

Fig. 2-29 (1) Bulb (12V, 3. 4W)

Fig. 2-30 (1) 8 mm nut

Fig. 2-31 (1) 5 mm screws
(2) Combination light case

REAR WHEEL

The CB550F-A is different from the CB550 in that the rear ends of the rear fork is so constructed to prevent the rear wheel from coming off.

A. Disassembly

For the steps $1 \sim 4$, see page 74 of CB500~ 550. Push the wheel forward, and left the chain off the driven sprocket. Remove the back bolts and chain adjusting stoppers, and pull the wheel rearward and the axle to left to remove the wheel.

Fig. 2-32 (1) Cotter pin
(2) Axle nut
(3) Rear wheel axle shaft

Carburetor setting table

CB500	Item	CB550F-A
022 A	Setting no.	069 A
$\# 100$	Main jet	$\# 98$
$2.515 \phi-2^{\circ} 30^{\prime}-4$ grooves	Jet needle	$2.495 \phi-3^{\circ} 00^{\prime}-2$ grooves
$1-1 / 2 \pm 3 / 8$ taper 12°	Air screw	$1-1 / 2 \pm 1 / 2$ taper 18°
$0.9 \phi \times 2$	Air bleed 1	$0.7 \phi \times 2$
$0.9 \phi \times 2$	Air bleed 2	$0.7 \phi \times 2$
$0.9 \phi \times 2$	Air bleed 3	$0.7 \phi \times 2$
$0.9 \phi \times 2$	Air bleed 4	$0.7 \phi \times 2$
$0.9 \phi \times 2$	Air bleed 5	$0.7 \phi \times 2$

	Item	English	Metric
ENGINE	Air Filtration	Paper element	
	Valve Tappet Clearance	IN : 0.002, EX: 0.003 in .	IN : $0.05, \mathrm{EX}: 0.08 \mathrm{~mm}$
	Engine weight	159 lb .	72 kg
	Air Screw Opening	$1-3 / 4 \pm 1 / 2$ turns	
	Idle Speed	$1,000 \mathrm{rpm}$	
	Clutch	Wet, multi-plate	
	Transmission	5 -speed, constant mesh	
	Primary Reduction	3.062	
	Gear Ratio I	2. 353	
TRAIN	" II	1. 636	
	" III	1. 269	
	" IV	1. 036	
	" V	0.900	
	Final Reduction	2.176, drive sprocket 17 , driven sproket 37 T	
	Gear Shift Pattern	Left foot return type	
ELECTRICAL	Ignition	Battery and ignition coil	
	Starting System	Electrical motor and kick pedal	
	Alternator	Three phase A.C. $12 \mathrm{~V}-0.11 \mathrm{~kW} / 2,000 \mathrm{rpm}$	
	Battery Capacity	12V-12AH	
	Spark Plug	NGK D-7ES. DENSO X-22ES	
	Headlight	Low/high,	12V-50W/50W
	Tail/stoplight	Tail/Stop	$12 \mathrm{~V}-8 \mathrm{~W} / 27 \mathrm{~W}$
	Turn Signal light	Front/Rear	12V-23W/23W
	Speedometer Light	$12 \mathrm{~V}-3.4 \mathrm{~W}$	
	Tachometer Light	12V-3.4W	
	Neutral Indicator Light	$12 \mathrm{~V}-3.4 \mathrm{~W}$	
	Turn Signal Indicator Light	$12 \mathrm{~V}-3.4 \mathrm{~W}$	
	High Beam Indicator Light	12V-3.4W	

WIRING ILLUST

(1) Clutch cable
(2) Clutch lever switch cable
(3) Handle switch (L) cord
(4) Handle switch (R) cord
(5) Front brake hose
(6) Throttle cable
(7) Throttle cable
(8) Handle (R) (L) switch cord
(9) Throttle cable (R) (L)

WIRING DIAGRAM CB 550 F-A

Insert this addendum after page 169 of the CB500, 550 Shop Manual.

Engine No. CB550 E-1067334 and subsequent

Frame No. CB550E-1230001 and subsequent

Fig. K2-1 (1) Breather tube

Fig. K2-2 (1) Front brake disc
(2) UBS nut

Fig. K2-3 (1) Rear fork
(2) Grease nipple

1. BREATHER TUBE

The breather tube has been rerouted as shown in Fig. K2-1.

2. FRONT WHEEL

The front brake will no longer use the tanged washer and nut arrangement for the attachment of the brake disc to the wheel hub. The disc is now tightened with UBS nuts. Tightening torque : $270-330 \mathrm{~kg}-\mathrm{cm}$
(20-24 lbs-ft)

3. FORK TOP BRIDGE

The flange bolts used for tightening the fork top bridge will be changed in size from 8 mm to 7 mm .
Tightening torque : $180-250 \mathrm{~kg}-\mathrm{cm}$
(13-18 lbs-ft)

4. REAR FORK

The rear fork pivot pipe now has a grease nipple at its center. The grease nipples formerly located at both ends of the rear fork pivot bolt were discontinued.

4. SPECIFICATIONS (CB550 ${ }^{7} 76$)

Item	
DIMENSION	
Overall Length	$2,120 \mathrm{~mm}$ (83.5 in.$)$
Overall Width	825 mm (32.5 in .)
Overall Height	$1,115 \mathrm{~mm}$ (44.0 in .)
Wheel Base	$1,405 \mathrm{~mm}$ (55.5 in.$)$
Seat Height	805 mm (31.7 in.$)$
Foot Peg Height	315 mm (12.4 in .)
Ground Clearance	150 mm (6.3 in.$)$
Dry Weight	192 kg (423 lb.$)$
FRAME	Double cradle frame
Type	
F. Suspension, Travel	Telescopic fork, travel $121 \mathrm{~mm}(4.8 \mathrm{in}$.)
R. Suspension, Travel	Swing arm, travel 77.3 mm (3.0 in .)
F. Tire Size, Type	$3.25-19-4$ PR Rib, tire air pressure $1.75 / 2.0 \mathrm{~kg} / \mathrm{cm}^{2}(25 / 28 \mathrm{psi})$
R. Tire Size, Type	$3.75-18-4$ PR Block, tire air pressure $2.0 / 2.5 \mathrm{~kg} / \mathrm{cm}^{2}(28 / 36 \mathrm{psi})$
F. Brake	Disk brake
R. Brake	Internal expanding shoe
Fuel Capacity	14.0 lit. (3.7 U.S.gal. 3.1 Imp.gal.)
Fuel Reserve Capacity	5.0 lit. (1.3 U.S.gal. 1.1 Imp.gal.)
Caster Angle	64°
Trail Length	105 mm (4.1 in.)
ENGINE	Air-cooled 4-stroke O.H.C. engine
Type	
Cylinder Arrangement	4 cylinder in line
Bore and Stroke	$58.5 \times 50.6 \mathrm{~mm}(2.303 \times 1.992 \mathrm{in}$.
Displacement	$544 \mathrm{cc}(33.19 \mathrm{cu} \mathrm{in}$.)
Compression Ratio	9:1
Carburetor, Venturi Dia.	Four Piston valve type, venturi dia. 22 mm (0.866 in .)
Valve Train	Chan driven over head camshaft
Oil Capacity	3.0 lit. (3.2 U.S. qt $2.6 \mathrm{Imp} . \mathrm{qt}$)
Lubrication System	Forced pressure and wet sump
Fuel Required	Low-lead gasoline with 91 octane number or higher
Air Filtration	Paper filter
Valve Tappet Clearance	IN : $0.05, \mathrm{EX}: 0.08 \mathrm{~mm}$ (IN : 0.002, EX : 0.003 in .)
Air Screw Opening	$1^{1 / 2}$
Idle Speed	1000 rpm
DRIVE TRAIN Clutch	Wet multi-plate
Transmission	5-Speed constant mesh
Primary Reduction	3.063
Gear Ratio I	2.353
II	1.636
III	1.269
IV	1.036
V	0.900
Final Reduction	2.176, drive sprocket 17 T , driven sprocket 37 T
Gear Shift Pattern	Left foot operated return system
ELECTRICAL Ignition	Battery ${ }_{\mathbf{k}}^{\text {-and-ignition coil }}$
Starting System	Starting motor and kick starter
Alternator	A.C. Generator $0.13 \mathrm{kw} / 2,000 \mathrm{rpm}$
Battery Capacity	$12 \mathrm{~V}-12 \mathrm{AH}$
Spark plug	NGK D7ES or ND X22ES

5. WIRING DIAGRAM (CB550 ${ }^{\text {² }} 76$)

Date of Issue: NOV. 28, 1975

19. SUPPLEMENT TO CB500K3/CB550K3 ('77)

Engine No. CB550E-2000001 and subsequent
Frame No. CB550K-2000001 and subsequent
Engine No. CB500E-2200001 and subsequent
Frame No. CB500-1000001 and subsequent

1. CARBURETOR

A. Removal and installation

1. Turn the fuel valve lever to the "OFF" position and disconnect the fuel tube at the fuel valve and remove the over flow tube.
2. Open the seat and remove the fuel tank.
3. Remove the air cleaner case.
4. Remove the choke and throttle cables from the cable holders and disconnect them from each shaft lever.

Fig. K3-1 (1) Choke cable
(2) Throttle cables
(3) Cable holders

Fig. K3-2 (1) Carburetor insulator band
(2) Air cleaner connecting band

Fig. K3-3 (1) Bolt
(2) Rear stay

Fig. K3-4 (1) Throttle return spring
(2) Screw
(3) Stay plate

Fig. K3-5 (1) Link arm fixing screw
(2) Set screw
(3) Lock nut

Fig. K3-6 (1) Screw
(2) Choke valve

B. Disassembly

Carburetor, throttle valve and jet needle:

1. Remove the carburetor assembly from the engine.
2. Remove the rear stays from the carburetor assembly by removing the four bolts.
3. Unhook the throttle return spring from the stopper arm. Remove the stay plate by removing the eight screws.
Unhook the choke relief spring at the choke lever.
4. Remove the carburetor top by removing the two screws. Loosen the link arm fixing screw.
Loosen the lock nut and remove the throttle lever set screw.
5. Remove the choke valve from the choke shaft by removing the two screws.
6. Separate the carburetors.
7. Remove the link arm assembly from the carburetor.
8. Remove the two screws and remove the throttle valve and jet needle from the link arm.

Float, main jet and slow jet:

1. Remove the carburetor assembly from the engine.
2. Remove the three screws and the float chamber body from the carburetor.
3. Remove the float and float valve by pulling the float arm pin out.
4. Remove the main jet and slow jet.

C. Assembly

To assemble the carburetors reverse the disassembly procedure. Observe the following notes:

1. Install the throttle valve to the link arm so that the throttle valve cutaway faces the choke valve when it is installed in the carburetor body.
2. The link arm which is not equipped with the adjusting screw should be installed in the No. 2 carburetor.

Fig. K3-7 (1) Link arm
(3) Jet needle
(4) Screw

Fig. K3-8
(1) Float arm pin
(2) Float
(3) Float valve
(4) Main jet
(5) Slow jet

Fig. K3-9 (1) Throttle valve cutaway

Fig. K3-10 (1) Link arm for No. 2 carburetor
(2) Link arm for No. 1, 3 and 4 carburetor

Fig. K3-11

Fig. K3-12
(1) Choke shaft
(2) Choke valve
(3) Lock washer
(4) Hex head screw

D. Carburetor setting table

Item	CB550K3	CB500K3
Main jet	$\# 90$	$\# 90$
Air jet	$\# 130$	$\# 120$
Slow jet	$\# 38$	$\# 42$
Slow air jet	$\# 150$	$\# 150$
Jet needle	3rd. groove	2nd groove
setting	E2349F	E2350F
Float height	14.5 mm	14.5 mm
	$(0.57 \mathrm{in})$.	$(0.57 \mathrm{in})$.

E. Adjustment

Idle speed:
Make the adjustment with the engine warmed up.

1. Adjust the idle stop screw to allow the engine to run at the idle speed of 1050 rpm.
2. Turn the pilot screws either in or out to obtain the highest idle speed. Usually the correct setting will be found to be $11 / 2$ turns open from a fully closed position.
3. If idle speed changes after adjusting the pilot screw, readjust the idle stop screw.

Synchronizing carburetors:

1. Remove the fuel tank. Position the fuel tank higher than the carburetors and reconnect with a longer fuel tube.
2. Connect the vacuum gauge set to the carburetors.
3. Run the engine at the specified idle speed and read the vacuum. The vacuum gauge readings should be the same on all four gauges.
4. To adjust, proceed as follows:
a. Remove the carburetor tops from the No. 1, 3 and 4 carburetors.
b. Loosen the lock nut and turn the adjusting screw until the vacuum reading is the same as the No. 2 carburetor reading.

Fast idle:

1. Remove the fuel tank.
2. Pull the choke knob out fully and turn the adjusting screw until it touches the stopper.
3. Push the choke knob in and turn the adjusting screw in $2 \frac{1}{2}$ turns.
Fast choke idle speed : 3000-4000 rpm

2. SWITCH HOUSING

When installing the right or left switch housing, align the mating edges of the housing with the punch mark on the handlebar and tighten the two screws securely.
The aligning mark on the brake lever bracket holder should also be lined up with the punch mark.

Fig. K3-14 (1) Vacuum gage set

Fig. K3-15
(1) Lock nut
(2) Adjusting screw

Fig. K3-16 (1) Adjusting screw

Fig. K3-17 (1) Punch mark
(2) Switch housing
(3) Aligning mark on holder

3．SERVICE DATA

	Standard value	Service limit
Front shock absorber spring free length	$443.5 \mathrm{~mm}(17.46 \mathrm{in})$.	$409.5 \mathrm{~mm}(16.12 \mathrm{in})$.
Rear shock absorber spring free length	$210.4 \mathrm{~mm}(8.28 \mathrm{in})$.	$205 \mathrm{~mm}(8.07 \mathrm{in})$.
Front brake	Caliper cylinder I．D．	$38.18-38.23 \mathrm{~mm}(1.503-1.505 \mathrm{in})$.
	Caliper piston O．D．	$38.115-38.148 \mathrm{~mm}(1.501-1.502 \mathrm{in})$.

4．SPECIFICATIONS（CB $500 \mathrm{~K} 3 / \mathrm{CB} 550 \mathrm{~K} 3{ }^{\text {＇}} 77$ ）

Item Type	U．S．A．〔Canada〕	General and Australia	Europe＜CB500〉	France
DIMENSION				
Overall Length	$2,150 \mathrm{~mm}$（84．7 in．）		2，160 mm	2，155 mm
Overall Width	825 mm （32．5in．）		750 mm	
Overall Height	$1,115 \mathrm{~mm}$（ 44.0 in ．）		$1,100 \mathrm{~mm}$	
Wheel Base	1，405 mm（55．5 in．）			
Seat Height	800 mm （31．5in．） 825 mm （32．5in．）			
Ground Clearance	160 mm （6．3 in．）			
Dry Weight	193.5 kg （ 426 lb.$)$		196 kg	
FRAME	Double cradle frame			
Type				
F．Suspension，Travel	Telescopic fork，travel 121 mm （4．8 in．）			
R．Suspension，Travel	Swing arm，travel 90.0 mm （ 3.5 in ．）			
F．Tire Size，Type	$3.25 \mathrm{~S} 19-4 \mathrm{PR}$ Rib，tire air pressure $1.75 / 2.0 \mathrm{~kg} / \mathrm{cm}^{2}(25 / 28 \mathrm{psi})$			
R．Tire Size，Type	3.75 S18－4PR Block，tire air pressure $2.0 / 2.5 \mathrm{~kg} / \mathrm{cm}^{2}(28 / 36 \mathrm{psi})$			
F．Brake	Disc brake			
R．Brake	Internal expanding shoe			
Fuel Capacity	16.0 lit．（4．2 U．S．gal． 3.5 Imp．gal．）			
Fuel Reserve Capacity	4.0 lit．（1．0 U．S．gal． 0.9 Imp．gal．）			
Caster Angle	64°			
Trail Length	104 mm （4．1 in．）			
ENGINE	Air－cooled 4－stroke O．H．C．engine			
Type				
Cylinder Arrangement	4 cylinder in line			
Bore and Stroke	$58.5 \times 50.6 \mathrm{~mm}(2.303 \times 1.992 \mathrm{in}$ ．）$\langle 56.0 \times 50.6 \mathrm{~mm}\rangle$			
Displacement	$544 \mathrm{cc}(33.19 \mathrm{cu}-\mathrm{in}).\langle 498 \mathrm{cc}\rangle$			
Compression Ratio	9：1			
Carburetor，Venturi Dia．	Four Piston valve type，venturi dia． 22 mm （ 0.866 in ．）			
Valve Train	Chain driven overhead camshaft			
Oil Capacity	3.2 lit．（3．4 U．S．qt $2.8 \mathrm{Imp} . \mathrm{qt}$ ）			
Lubrication System	Forced pressure and wet sump			
Fuel Required	Low－lead gasoline with 91 octane number or higher			
Air Filtrer	Paper filter			
Intake Valve： Opens Closes	$\begin{array}{r} 5^{\circ} \mathrm{BTDC} \\ 35^{\circ} \mathrm{ABDC} \end{array}$			
Exhaust Valve： Opens Closes	$\begin{array}{r} 35^{\circ} \mathrm{BBDC} \\ 5^{\circ} \mathrm{ATDC} \end{array}$			
Valve Tappet Clearance	IN ： $0.05 \mathrm{~mm}, \mathrm{EX}: 0.08 \mathrm{~mm}$（IN ： $0.002 \mathrm{in}, \mathrm{EX}: 0.003 \mathrm{in}$ ．）			
Pilot Screw Opening	$1^{1 / 2} \pm \pm 1 / 2$			
Idle Speed	1050 rpm			

Item	
DRIVE TRAIN	Wet multi-plate
Clutch	
Transmission	5-Speed constant mesh
Primary Reduction	3.063
Gear Ratio I	2.353
II	1.636
III	1.269
IV	1.036
V	0.900
Final Reduction	2.176, drive sprocket 17 T , driven sprocket 37 T
Gear Shift Pattern	Left foot operated return system
ELECTRICAL Ignition	Battery and ignition coil
Ignition Advance : "F" mark Max. advance PPM from " F " to max. advance	$\begin{gathered} 5^{\circ} \mathrm{BTDC} \\ 28^{\circ}-31^{\circ} \mathrm{BTDC} \\ 1,200-2,500 \mathrm{rpm} \end{gathered}$
Dwell Angle	$190 \pm 5^{\circ}$
Starting System	Starting motor and kick starter
Alternator	A.C. Generator $0.13 \mathrm{kw} / 2,000 \mathrm{rpm}$
Battery	$12 \mathrm{~V}-12 \mathrm{AH}$
Spark plug	NGK D7ES or ND X22ES NGK DR7ES or (NGK DR7ES or ND X22ESR-V) ND X22ESR-U
Condenser Capacity	$0.02-0.24 \mu \mathrm{~F}$

5. WIRING DIAGRAM

CB550K3 '77 (U.S.A. Type and Canada Type)

Prev Page of Issue : dulntennts. ${ }^{977}$

CB500K3/CB550K3 '77 (Europe Type)

CB550K3 '77 (General Type and Australia Type)

Date of Issue: July 20, 1977
(C) HONDA MOTOR CO. LTD., 1977

20. SUPPLEMENT TO CB550F2 ('77)

Engine No. CB550E-1135380 and subsequent
 Frame No. CB550F-2100001 and subsequent

1. CLUTCH

The clutch plate $\mathrm{B}(5)$ differs in construction from the five other cluch plates B (3).
Install the clutch plate B (5) at the fourth position as counted from the clutch center (1).

2. FUEL VALVE

The valve positions are indicated by the arrow on the lever.
Inspection and cleaning :

1. Place the fuel lever in the "OFF" position and disconnect the fuel lines. Remove the fuel tank.
2. Drain the fuel tank thoroughly.
3. Loosen the fuel valve fixing nut and remove the fuel valve and fuel filter from the fuel tank.
4. Check the gasket to see that it is not damaged.
5. Wash the fuel filter in solvent and dry with compressed air. No damage can be tolerated here. Replace the filter with a new one if it is clogged and not cleanable.
6. Install the fuel filter to the fuel valve with the fixing nut. Do not forget to install the gasket into the groove of the fixing nut.
7. Install the fuel valve to the fuel tank with the fixing nut.
8. Install the fuel tank on the frame and connect the fuel lines and secure with the clip.
9. Fill the tank with fuel. With the fuel valve lever in the "ON" position, check for any leakage past the tube joints or connections.

Fig. F2-1 (1) Clutch center
(2) Clutch friction disk B
(3) Clutch plate B
(4) Clutch friction disk
(5) Clutch plate B comp.
(6) Clutch outer comp.

Fig. F2-2 (1) Arrow

Fig. F2-3 (1) Fuel valve

[^1]

Fig. F2-4 (1) Side stand bar (4) 6 mm bolt
(2) Spring
(3) Rubber pad
(5) Side stand pivot bolt

Fig. F2-5 (1) Starting switch
(2) Black/red lead
(3) Black lead
(4) Yellow/red lead

Fig. F2-6 (1) Main switch
(2) Brown lead
(4) Brown lead
(3) Brown/white lead
(5) Red lead
(6) Black lead

3. SIDE STAND (German Type)

Two springs are installed on the side stand.

4. ELECTRICAL SYSTEM INSPECTION

(Except U.S.A. and Canadian Type)

1. Clutch switch

See Page 161.

2. Starting switch

Remove the fuel tank and the connector cover by loosening the 6 mm screw. Take the starting switch terminal out of the connector. Check the switch for continuity between the sircuits $(\bigcirc-\bigcirc)$ shown in the table below. If there is continuity, the switch is in good condition.

Terminal	ST1	ST2	HL
Wire color	Black	Yellow/red	Black/red
FREE	O		O
PUSH	O		

3. Main switch

Place the switch key in OFF, ON or PARK position and check the switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table below. If there is no continuity or if there is continuity between circuits other than those shown in the table, the switch is defective.

Terminal	BAT	IG	TL1	TL2	PA
Wire color	Red	Black	Brown	Brown/White	Brown
OFF					
ON	O-	O	O		
PA	O		0		0

Date of Issue: July 20, 1977
(C) HONDA MOTOR CO. LTD., 1977

4. Dimmer switch and turn signal control switch

Remove the fuel tank, and the connector cover. Then take out the leads shown in the table below. Check each switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table. If there is continuity, the switch is in good condition. If there is no continuity, the switch is defective.

Terminal	W	B	L	R
Wire color	Green	Brown/ Blue	Orange	Light Blue
L_{2}	O	O	O	
L_{1}	O			
N				
R_{1}	O			
R_{2}	O	O		

Terminal	HL	Lo	Hi
Wire color	Black/Yellow	White	Blue
L	O	O	
H	O		0

5. Horn switch and passing switch

Remove the fuel tank, and the connector cover. Then take out the light green lead as shown. Attach one probe of a radio tester to the body or the black lead and the other probe to the light green lead.
There should be continuity when the horn button is pushed.
To test the passing switch, follow the same instructions as for the horn switch.

Terminal	IG	HO	Hi
Wire color	Black	Light green	Blue
HORN(push)	O	O	
PA(push)	O		0

Fig. F2-7 (1) Turn signal control switch
(2) Dimmer switch

Fig. F2-8
(1) Brown lead
(6) Light blue lead
(2) Brown/blue lead
(7) Orange lead
(3) Black/yellow lead
(8) Green lead
(4) White lead
(9) Light green lead
(5) Blue lead

Fig. F2-9 (1) Horn and passing switch
(2) Light green lead

Fig. F2-10
(1) Engine stop switch
(2) Black/white lead
(3) Black lead

Fig. F2-11 (1) Lighting switch
(2) Brown/blue lead
(3) Black/red lead

Fig. F 2-12

6. Engine stop swich

Remove the fuel tank and the connector cover. Check the switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table below. If there is no continuity, the switch is defective.

Terminal	IG	RUN
Wire color	Black	Black/white
OFF		
RUN	O	
OFF		

7. Lighting switch

Remove the Fuel tank and the connector cover. Check the switch for continuity between the circuits $(\bigcirc-\bigcirc)$ shown in the table below. If there is no continuity, the switch is defective.

Terminal	IG	P	HL
Wire color	Black	Brown/blue	Black/red
\bullet			
P	O		
H	O		

5. BRAKE INSPECTION

Replenishing Brake Fluid

Remove the reservoir cap, washer and diaphram, and whenever the level is lower than the level mark engraved inside the reservoir (Up to the line shown for semi-transparent reservoir), fill the reservoir with DOT 3 BRAKE FLUID (or SAE J 1703) up to the level mark. Reinstall the diaphram and washer, and tighten the reservoir cap securely.
NOTE:

- Do not mix different brands of brake fluid as chemical action will take place and may cause brake trouble.
- Do not use any other fluid in the brake system.
- Remove any brake fluid which may become spilled on the painted surface, rubber parts, and meter as it will produce chemical action and cause damage to these parts.

3. SPECIFICATIONS (CB 550 F 2 '77)

Item Type	$\begin{aligned} & \text { U.S.A. } \\ & \text { 〔Canada } \end{aligned}$	Australia	General	France	U.K.	Europe	Germany
DIMENSION							
Overall Length mm(in.)	2,115 (83.3)			2,105 (82.8)2,110 (83.1)		2,115 (84.8)	
Overall Width mm(in.)	835 (32.9)						
Overall Height mm(in.)	1,100 (43.3)			111 (43.7)			
Wheel Base mm(in.)	(1,405 (55.3)						
Seat Height mm(in.)	805 (31.7)			800 (31.5)			
Ground Clearance mm(in.)	(160 (6.3)						
Dry Weight	191 kg (421 lb.$)$			192 kg (423 lb.$)$			
FRAME	Double cradle frame						
Type							
F. Suspension, Travel	Telescopic fork, Travel 121 mm (4.8 in.)						
R. Suspension, Travel	Swing Arm, Travel 90 mm (3.5 in .)						
F. Tire Size, Type	$3.25 \mathrm{~S} 19-4 \mathrm{PR}$ Rib, tire air pressure $2.0 \mathrm{~kg} / \mathrm{cm}^{2}(28 \mathrm{psi})$						
R. Tire Size, Type	3.75 S18-4PR Block, tire air pressure $2.5 \mathrm{~kg} / \mathrm{cm}^{2}$ (36 psi)						
F. Brake	Disc brake						
R. Brake	Internal expanding shoe						
Fuel Capacity	16.0 lit. (4.2 U.S. gal. 3.5 Imp. gal.)						
Caster Angle	26°						
Trail Length	105 mm (4.1 in.)						
ENGINE	Air cooled 4 -stroke O.H.C. engine						
Type							
Cylinder Arrangement	$\checkmark 4$ cylinder in line						
Bore and Stroke	$58.5 \times 50.6 \mathrm{~mm}$ ($2.303 \times 1.992 \mathrm{in}$.)						
Displacement	544 cc						
Compression Ratio	9.0:1						
Carburetor, Venturi Dia.	4 Piston valve Type, Venturi dia. 22 mm (0.866 in .)						
Valve Train	Chain driven over head camshaft						
Oil Capacity	3.2 lit. (3.4 U.S. qt. 2.8 Imp. qt)						
Lubrication System	Forced pressure and wet sump						
Fuel Required	Low-lead gasoline with 91 octane number or higher						
Air Filtration	Paper filter						
Valve Tappet Clearance	IN. : 0.05 mm (0.002 in.) EX. : 0.08 mm (0.003 in.)						
Air Screw Opening	$1^{1 / 2}$						
Idle Speed	1,000 r.p.m.						
DRIVE TRAIN Clutch	Wet malti plate						
Transmission	5 -Speed constant mesh.						
Primary Reduction	3.062						
Gear Ratio I	2.353						
" II	1.636						
" III	1.269						
" IV	1.036						
" V	0.900						
Final Reduction	2.176 drive sprocket 17 T , driven sprocket 37 T						
Gear Shift Pattern	Left foot operated return system						
ELECTRICAL Ignition	Battery and Ignition coil						
Starting System	Electric motor and kick pedal						
Alternator	A.C. Generator $0.13 \mathrm{~kW} / 2,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.						
Battery Capacity	$12 \mathrm{~V}-12 \mathrm{AH}$						
Spark plug	NGK D7ES or ND X22ES (NGK DR7ES or ND X22ESR-U〕						

4. WIRING DIAGRAM CB 550 F 2 ' 77

(U.S.A. Type and Canada Type)

(GENERAL TYPE)

Date of Issue: July 20, 1977
(U.K. EUROPEAN TYPE)

Date of Issue: July 20, 1977
© C HONDA MOTOR CO. LTD., 1973 Next Page
(FRENCH TYPE)

Date of Issue: July 20, 1977
(GERMANY TYPE)

[^0]: (1) Lighting kill switch cable
 (2) Front brake switch cable
 (3) Clutch cable

[^1]: (2) Gasket
 (3) Fuel filter screen

